首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

时间序列和ARIMA模型预测拖拉机销售的制造案例研究

第1部分 :时间序列建模和预测简介 第2部分:在预测之前将时间序列分解为解密模式和趋势 第3部分:ARIMA预测模型简介 ARIMA模型 - 制造案例研究示例 回到我们的制造案例研究示例,准备好开始分析...步骤1:将拖拉机销售数据绘制为时间序列 首先,您已为数据准备了时间序列图。以下是您用于读取R中的数据并绘制时间序列图表的R代码。...我们需要使系列在方差上保持稳定,以通过ARIMA模型产生可靠的预测。 步骤3:记录变换数据以使数据在方差上保持不变 使系列在方差上保持静止的最佳方法之一是通过对数变换转换原始系列。...步骤4:差分对数变换数据使得数据在均值和方差上都是固定的 让我们看一下对数变换序列的差分图 。...此外,预测误差的范围(即标准偏差的2倍)在预测蓝线的两侧显示橙色线。 现在,长达3年的预测是一项雄心勃勃的任务。这里的主要假设是时间序列中的下划线模式将继续保持与模型中预测的相同。

72130

R语言时间序列和ARIMA模型预测拖拉机销售的制造案例研究

您可以在以下链接中找到以前的部分: 第1部分 :时间序列建模和预测简介 第2部分:在预测之前将时间序列分解为解密模式和趋势 第3部分:ARIMA预测模型简介 ARIMA模型 - 制造案例研究示例 回到我们的制造案例研究示例...第2步:差分数据使数据在平均值上保持不变(删除趋势) 用于绘制差异系列的R代码和输出显示如下: plot(diff(data),ylab='Differenced Tractor Sales') 好的,...我们需要使系列在方差上保持稳定,以通过ARIMA模型产生可靠的预测。 ? 步骤3:记录变换数据以使数据在方差上保持不变 使系列在方差上保持平稳的最佳方法之一是通过对数变换转换原始系列。...步骤4:差分对数变换数据使得数据在均值和方差上都是平稳的 让我们看一下对数变换序列的差分图 。...此外,预测误差的范围(即标准偏差的2倍)在预测蓝线的两侧显示橙色线。 ? 现在,长达3年的预测是一项雄心勃勃的任务。这里的主要假设是时间序列中的下划线模式将继续保持与模型中预测的相同。

1.6K10
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    独家 | 利用Auto ARIMA构建高性能时间序列模型(附Python和R代码)

    这一预测法要优于“朴素预测法”,因为它的结果不会是一条平行线。但是在简单平均值法中,过去的所有值都被考虑进去了,而这些值可能并不都是有用的。...我们将在下一节中更详细地讨论ARIMA。 三、ARIMA简介 在本节中,我们将简要介绍ARIMA,这将有助于理解Auto Arima。...ARIMA模型建立在以下假设的基础上: 数据序列是平稳的,这意味着均值和方差不应随时间而变化。通过对数变换或差分可以使序列平稳。...将数据加载到笔记本中。 2. 预处理数据:输入应该是单变量,因此删除其他列。 3. 拟合Auto ARIMA:在单变量序列上拟合模型。 4. 在验证集上进行预测:对验证集进行预测。 5....六、Python和R的实现 我们将使用国际航空旅客数据集,此数据集包含每月乘客总数(以千为单位),它有两栏-月份和乘客数。

    2.2K10

    重要的数据分析方法:时间序列分析

    本文将详细介绍Python数据分析中时间序列分析的高级技术点,包括时间序列预处理、模型建立、预测和评估等。图片1....以下是一些常见的时间序列模型:2.1 自回归移动平均模型(ARMA)自回归移动平均模型是一种线性模型,用于描述时间序列的自相关性和移动平均性。它将时间序列表示为过去时刻的观测值和白噪声的线性组合。...2.2 自回归积分移动平均模型(ARIMA)自回归积分移动平均模型是ARMA模型的扩展,用于处理非平稳时间序列。它通过差分运算将非平稳时间序列转化为平稳时间序列,然后应用ARMA模型。...可以使用ARMA、ARIMA、SARIMA等模型进行单步预测。3.2 多步预测多步预测是通过建立时间序列模型,使用已知的过去观测值来预测未来多个时刻的值。可以使用LSTM等深度学习模型进行多步预测。...3.3 滚动预测滚动预测是在每个时刻都更新模型,并使用最新的观测值来预测下一个时刻的值。这种方法可以不断调整模型以适应数据的变化。---4.

    77130

    最完整的时间序列分析和预测(含实例及代码)

    季节性(seasonality)-数据在特定的时间段内变动。比如说节假日,或者活动导致数据的异常。 3.1 对数变换 对数变换主要是为了减小数据的振动幅度,使其线性规律更加明显,同时保留其他信息。...另外DFtest的结果显示,Statistic值原小于1%时的Critical value,所以在99%的置信度下,数据是稳定的。...再次差分后的序列其自相关具有快速衰减的特点,t统计量在99%的置信水平下是显著的,这里我不再做详细说明。...(21) # 预测未来21天数据 模型拟合完后,我们就可以对其进行预测了。...由于ARMA拟合的是经过相关预处理后的数据,故其预测值需要通过相关逆变换进行还原。

    4.1K20

    最全总结【时间序列】时间序列的预处理和特征工程

    一次差分的公式为: y_t' = y_t - y_{t-1} 在LSTM应用中,差分处理后通常有助于消除数据中的长期趋势,使得序列更加平稳。...例如,使用对数变换后,数据的变化通常变得更加线性。...季节性成分通常表现为固定周期的波动,可以使用 季节性分解 技术(如 STL 分解、X-12-ARIMA)将时间序列分解为趋势、季节性和残差成分。去季节性的过程通常包括以下步骤: 提取季节性模式。...标准化的目的是使得数据的均值为0,方差为1;而归一化通常是将数据缩放到0到1的范围内。...掌握这些技巧将帮助你在时间序列分析中取得更好的效果,为预测模型提供有力的支持。

    30210

    Prophet在R语言中进行时间序列数据预测

    您将学习如何使用Prophet(在R中)解决一个常见问题:预测公司明年的每日订单。 数据准备与探索 Prophet最拟合每日数据以及至少一年的历史数据。...然后,在R 中,我们可以使用以下语句将查询结果集传递到数据帧df中: df <- datasets[["Daily Orders"]] 为了快速了解您的数据框包含多少个观测值,可以运行以下语句:...Box-Cox变换 通常在预测中,您会明确选择一种特定类型的幂变换,以将其应用于数据以消除噪声,然后再将数据输入到预测模型中(例如,对数变换或平方根变换等)。...预测和组件可视化显示,Prophet能够准确地建模数据中的潜在趋势,同时还可以精确地建模每周和每年的季节性(例如,周末和节假日的订单量较低)。...---- 最受欢迎的见解 1.在python中使用lstm和pytorch进行时间序列预测 2.python中利用长短期记忆模型lstm进行时间序列预测分析 3.使用r语言进行时间序列(arima,指数平滑

    1.6K20

    一阶差分序列garch建模_时间序列分析

    平稳化的基本思路是:通过建模并估计趋势和季节性这些因素,并从时间序列中移除,来获得一个稳定的时间序列,然后再使用统计预测技术来处理时间序列,最后将预测得到的数据,通过加入趋势和季节性等约束,来还原到原始时间序列数据...2.0 对数变换  对某些时间序列需要取对数处理,一是可以将一些指数增长的时间序列变成线性增长,二是可以稳定序列的波动性。对数变换在经济金融类时间序列中常用。  ...,对过去的数据减小权重。...(EACF定阶)  ——截尾:在某阶后迅速趋于0(后面大部分阶的对应值在二倍标准差以内);  ——拖尾:按指数衰减或震荡,值到后面还有增大的情况。  ARIMA模型:适用于差分后平稳的序列。  ...拟合优度检验(模型的评估):R^2和调整后的R^2(R^2只适用于平稳序列)。

    1.8K00

    通过 Python 代码实现时间序列数据的统计学预测模型

    在本篇中,我们将展示使用 Python 统计学模型进行时间序列数据分析。 问题描述 目标:根据两年以上的每日广告支出历史数据,提前预测两个月的广告支出金额。...ARIMA(p,d,q)主要包含三项: p:AR项,即自回归项(autoregression),将时间序列下一阶段描述为前一阶段数据的线性映射。...显然,通过差分操作后,效果更好,时间序列在阈值为1%时满足平稳性要求。...为此,我们将使用 ETS 技术,通过指数方法为过去的数据分配较少的权重。同时将时间序列数据分解为趋势(T)、季节(S)和误差(E)分量。...根据数据,平均每月广告支出为2百万美元以上。而这两种算法的MAE大约在6000左右。换言之,对于一家平均每月广告支出为2百万美元的企业,两个月的广告支出预测误差只在6000美元左右,这是相当可观的。

    2.1K10

    如何检测时间序列中的异方差(Heteroskedasticity)

    让我们从一个可视化的例子开始。 下面的图1显示了航空公司乘客的时间序列。可以看到在整个序列中变化是不同的。在该系列的后一部分方差更高。这也是数据水平跨度比前面的数据大。...这些试验为异方差的存在提供了令人信服的证据。 为了再次证明我们的观点,我们可以将时间序列前半部分和后半部分方差的分布进行可视化: 这两部分的方差分布不同。...只有一个检验(Breusch-Pagan)拒绝了零假设(这里假设显著性水平为0.05)。 恢复对数缩放转换 我们使用对数变换后的数据进行预测,预测结果还是需要还原到原始尺度的。...这是通过逆变换来完成的,在对数的情况下,你应该使用指数变换。 所以我们的完整预测过程的如下: 对数据进行变换,使方差稳定; 拟合预测模型; 获得预测结果,并将其恢复到原始尺度。...这些测试包括White,Breusch-Pagan,Goldfeld-Quandt检验; 使用对数变换来稳定方差; 预测值需要还原到原始值。 作者:Vitor Cerqueira

    1.3K30

    十大宝藏时序模型汇总。

    时间序列建模在销量预测,天气预测,车流量预测,股票价格预测等问题中扮演着至关重要的角色,一般时间序列的问题可以表述为下面的形式 ?...Naïve模型的扩展是SNaïve,SNaïve假设时间序列是有周期性的,而且其周期为T,则: 因此,以下T时间步的预测值与之前T时间步的预测值相等。...02 Seasonal decomposition (+ any model) 如果数据显示出某种周期性(例如,每日、每周、每季度、每年),则我们可以将原始时间序列分解为三个部分的总和: 其中是周期性部分...在自回归模型中,预测值对应于变量过去值的线性组合。在移动平均模型中,预测与过去预测误差的线性组合相对应。 基本上,ARIMA模型结合了这两种方法。...SARIMA SARIMA模型(周期性ARIMA)则添加了周期性的过去值和/或预测误差的线性组合来扩展ARIMA。

    2.6K20

    R语言中的时间序列分析模型:ARIMA-ARCH GARCH模型分析股票价格|附代码数据

    以下是在R中执行ARIMA的代码:  summary(arima212) 参数估计 要估算参数,请执行与先前所示相同的代码。结果将提供模型每个元素的估计。...重要的是要记住,ARIMA是一种对数据进行线性建模且预测保持不变的方法,因为该模型无法反映最近的变化或合并新信息。换句话说,它为序列提供了最佳的线性预测,因此在非线性模型预测中几乎没有作用。...请记住,在将ARIMA拟合所需的差分序列时,R将排除常数。因此,我们先前从R生成的结果是ARIMA 2,1,2),没有常数。...步预测和95%置信区间,我们使用从R或Minitab获得的ARIMA预测,然后将ht添加到ARIMA预测中。...因此,为了更新模型,用户需要合并新数据并再次估计参数。ARIMA模型中的方差是无条件方差,并且保持恒定。ARIMA适用于平稳序列,因此,应变换非平稳序列(例如对数变换)。

    1.2K20

    ARIMA模型,ARIMAX模型预测冰淇淋消费时间序列数据|附代码数据

    该模型假定一个变量的未来的值线性地取决于其过去的值,以及过去(随机)影响的值。ARIMAX模型是ARIMA模型的一个扩展版本。它还包括其他独立(预测)变量。该模型也被称为向量ARIMA或动态回归模型。...accuracy练习5为消费数据估计一个扩展的ARIMA模型,将温度变量作为一个额外的回归因子(使用auto.arima函数)。...vars 的矩阵来拟合三个扩展的ARIMA模型,使用以下变量作为额外的回归因子。温度、收入。温度、收入的滞后期为0、1。...Garch波动率预测的区制转移交易策略金融时间序列模型ARIMA 和GARCH 在股票市场预测应用时间序列分析模型:ARIMA-ARCH / GARCH模型分析股票价格R语言风险价值:ARIMA,GARCH...ARIMA 和GARCH 在股票市场预测应用MATLAB用GARCH模型对股票市场收益率时间序列波动的拟合与预测R语言GARCH-DCC模型和DCC(MVT)建模估计Python 用ARIMA、GARCH

    1.5K00

    R语言中的时间序列分析模型:ARIMA-ARCH GARCH模型分析股票价格|附代码数据

    要执行R中的差分,请执行以下步骤: •读取R中的数据文件并将其存储在变量中appl.close=appl$Adjclose #在原始文件中读取并存储收盘价•绘制原始股票价格plot(ap.close,type...重要的是要记住,ARIMA是一种对数据进行线性建模且预测保持不变的方法,因为该模型无法反映最近的变化或合并新信息。换句话说,它为序列提供了最佳的线性预测,因此在非线性模型预测中几乎没有作用。...请记住,在将ARIMA拟合所需的差分序列时,R将排除常数。因此,我们先前从R生成的结果是ARIMA 2,1,2),没有常数。...步预测和95%置信区间,我们使用从R或Minitab获得的ARIMA预测,然后将ht添加到ARIMA预测中。...因此,为了更新模型,用户需要合并新数据并再次估计参数。ARIMA模型中的方差是无条件方差,并且保持恒定。ARIMA适用于平稳序列,因此,应变换非平稳序列(例如对数变换)。

    1.3K30

    R语言中的时间序列分析模型:ARIMA-ARCH GARCH模型分析股票价格|附代码数据

    要执行R中的差分,请执行以下步骤: •读取R中的数据文件并将其存储在变量中appl.close=appl$Adjclose #在原始文件中读取并存储收盘价•绘制原始股票价格plot(ap.close,type...重要的是要记住,ARIMA是一种对数据进行线性建模且预测保持不变的方法,因为该模型无法反映最近的变化或合并新信息。换句话说,它为序列提供了最佳的线性预测,因此在非线性模型预测中几乎没有作用。...请记住,在将ARIMA拟合所需的差分序列时,R将排除常数。因此,我们先前从R生成的结果是ARIMA 2,1,2),没有常数。...步预测和95%置信区间,我们使用从R或Minitab获得的ARIMA预测,然后将ht添加到ARIMA预测中。...因此,为了更新模型,用户需要合并新数据并再次估计参数。ARIMA模型中的方差是无条件方差,并且保持恒定。ARIMA适用于平稳序列,因此,应变换非平稳序列(例如对数变换)。

    1.2K00

    R语言中的时间序列分析模型:ARIMA-ARCH GARCH模型分析股票价格|附代码数据

    以下是在R中执行ARIMA的代码:  summary(arima212) 参数估计 要估算参数,请执行与先前所示相同的代码。结果将提供模型每个元素的估计。...重要的是要记住,ARIMA是一种对数据进行线性建模且预测保持不变的方法,因为该模型无法反映最近的变化或合并新信息。换句话说,它为序列提供了最佳的线性预测,因此在非线性模型预测中几乎没有作用。...请记住,在将ARIMA拟合所需的差分序列时,R将排除常数。因此,我们先前从R生成的结果是ARIMA 2,1,2),没有常数。...步预测和95%置信区间,我们使用从R或Minitab获得的ARIMA预测,然后将ht添加到ARIMA预测中。...因此,为了更新模型,用户需要合并新数据并再次估计参数。ARIMA模型中的方差是无条件方差,并且保持恒定。ARIMA适用于平稳序列,因此,应变换非平稳序列(例如对数变换)。

    90510

    时间序列分析模型:ARIMA-ARCH GARCH模型分析股票价格

    以下是在R中执行ARIMA的代码: summary(arima212) 参数估计 要估算参数,请执行与先前所示相同的代码。结果将提供模型每个元素的估计。...重要的是要记住,ARIMA是一种对数据进行线性建模且预测保持不变的方法,因为该模型无法反映最近的变化或合并新信息。换句话说,它为序列提供了最佳的线性预测,因此在非线性模型预测中几乎没有作用。...请记住,在将ARIMA拟合所需的差分序列时,R将排除常数。因此,我们先前从R生成的结果是ARIMA 2,1,2),没有常数。...步预测和95%置信区间,我们使用从R或Minitab获得的ARIMA预测,然后将ht添加到ARIMA预测中。...因此,为了更新模型,用户需要合并新数据并再次估计参数。ARIMA模型中的方差是无条件方差,并且保持恒定。ARIMA适用于平稳序列,因此,应变换非平稳序列(例如对数变换)。

    3.1K30

    R语言中的时间序列分析模型:ARIMA-ARCH GARCH模型分析股票价格

    以下是在R中执行ARIMA的代码: summary(arima212) 参数估计 要估算参数,请执行与先前所示相同的代码。结果将提供模型每个元素的估计。...重要的是要记住,ARIMA是一种对数据进行线性建模且预测保持不变的方法,因为该模型无法反映最近的变化或合并新信息。换句话说,它为序列提供了最佳的线性预测,因此在非线性模型预测中几乎没有作用。...请记住,在将ARIMA拟合所需的差分序列时,R将排除常数。因此,我们先前从R生成的结果是ARIMA 2,1,2),没有常数。...步预测和95%置信区间,我们使用从R或Minitab获得的ARIMA预测,然后将ht添加到ARIMA预测中。...因此,为了更新模型,用户需要合并新数据并再次估计参数。ARIMA模型中的方差是无条件方差,并且保持恒定。ARIMA适用于平稳序列,因此,应变换非平稳序列(例如对数变换)。

    6.6K10

    R语言中的时间序列分析模型:ARIMA-ARCH GARCH模型分析股票价格

    以下是在R中执行ARIMA的代码:  summary(arima212) 参数估计 要估算参数,请执行与先前所示相同的代码。结果将提供模型每个元素的估计。...重要的是要记住,ARIMA是一种对数据进行线性建模且预测保持不变的方法,因为该模型无法反映最近的变化或合并新信息。换句话说,它为序列提供了最佳的线性预测,因此在非线性模型预测中几乎没有作用。...请记住,在将ARIMA拟合所需的差分序列时,R将排除常数。因此,我们先前从R生成的结果是ARIMA 2,1,2),没有常数。...步预测和95%置信区间,我们使用从R或Minitab获得的ARIMA预测,然后将ht添加到ARIMA预测中。...因此,为了更新模型,用户需要合并新数据并再次估计参数。ARIMA模型中的方差是无条件方差,并且保持恒定。ARIMA适用于平稳序列,因此,应变换非平稳序列(例如对数变换)。

    1.4K20

    使用R语言进行时间序列(arima,指数平滑)分析

    仅显示了文件的前几行。前三行包含对数据的一些注释,当我们将数据读入R时我们想要忽略它。我们可以通过使用scan()函数的“skip”参数来使用它,它指定了多少行。要忽略的文件顶部。...一旦将时间序列数据读入R,下一步就是将数据存储在R中的时间序列对象中,这样就可以使用R的许多函数来分析时间序列数据。要将数据存储在时间序列对象中,我们使用R中的ts()函数。...预测显示为蓝线,80%预测区间为橙色阴影区域,95%预测区间为黄色阴影区域。 对于简单的指数平滑,我们可以通过检查样本内预测误差是否在滞后1-20处显示非零自相关来检查是否可以改进预测模型。...使用ARIMA模型进行预测 为时间序列数据选择最佳候选ARIMA(p,d,q)模型后,您可以估计该ARIMA模型的参数,并将其用作预测模型,以便对时间序列的未来值进行预测。...根据“arima()”R函数(上图)的输出,在拟合ARIMA(0,1,1)模型的情况下,theta的估计值(在R输出中给定为'ma1')为-0.7218到国王死亡的时间序列。

    5.1K61
    领券