sql server 每次在备份的时候都会把相关信息记录到msdb库下面的表里面,为了更直观的查看备份的情况,我们可以在grafana上配置相关图表进行展示。...'D' group by CONVERT(DATE, backup_finish_date) order by CONVERT(DATE, backup_finish_date) desc 绘制明细表格
本文来自 stack overflow 上的一个帖子 base与data.table适用 SQL版 流行的dplyr 最后看看各种操作的性能吧 data.table 就是牛批!
在本示例中,将逐步使用TensorFlow对象检测API训练对象检测模型。尽管本教程介绍了如何在医学影像数据上训练模型,但只需进行很少的调整即可轻松将其适应于任何数据集。...还可以将数据集导出为所需的任何格式。 训练模型 将训练更快的R-CNN神经网络。更快的R-CNN是一个两阶段的对象检测器:首先,它识别感兴趣的区域,然后将这些区域传递给卷积神经网络。...更快的R-CNN是TensorFlow对象检测API默认提供的许多模型架构之一,其中包括预先训练的权重。这意味着将能够启动在COCO(上下文中的公共对象)上训练的模型并将其适应用例。...TensorFlow甚至在COCO数据集上提供了数十种预训练的模型架构。...使用Faster R-CNN的模型配置文件在训练时包括两种类型的数据增强:随机裁剪以及随机水平和垂直翻转。 模型配置文件的默认批处理大小为12,学习率为0.0004。根据训练结果进行调整。
vis_compare()可视化相同维度的两个数据帧之间的差异 vis_expect()可视化数据中满足某些条件成立的数据 vis_cor()在一个漂亮的热图中可视化变量的相关性 vis_guess...上图告诉我们:R将此数据集读取为数值型或者整数型,并在Ozone和Solar.R中存在一些缺失的数据。缺少的数据由灰色表示。...如果尝试在列不同时比较两个数据框的差异,则会出现一个错误: chickwts_diff_2 <- chickwts chickwts_diff_2$new_col 绘制数据的相关性,请使用vis_cor函数: ?...当在超过1000行的数据上使用它时,请考虑这一点。
在2021年1月,OpenAI宣布了两个新模型:DALL-E和CLIP,它们都是以某种方式连接文本和图像的多模态模型。...也就是说它是在完整的句子上训练的,而不是像“汽车”、“狗”等离散的分类,这一点对于应用至关重要。当训练完整的短语时,模型可以学习更多的东西,并识别照片和文本之间的模式。...他们还证明,当在相当大的照片和与之相对应的句子数据集上进行训练时,该模型是可以作为分类器的。...CLIP在发布的时候能在无任何微调的情况下(zero-shot ),在 ImageNet 数据集上的分类表现超 ResNets-50 微调后的效果,也就是说他是非常有用的。...也就是说CLIP这种方法在小数据集上自定义也是可行的。
本文将介绍使用LoRa在本地机器上微调Alpaca和LLaMA,我们将介绍在特定数据集上对Alpaca LoRa进行微调的整个过程,本文将涵盖数据处理、模型训练和使用流行的自然语言处理库(如Transformers...数据集加载 现在我们已经加载了模型和标记器,下一步就是加载之前保存的JSON文件,使用HuggingFace数据集库中的load_dataset()函数: data = load_dataset("json...第三个函数generate_and_tokenize_prompt结合了前两个函数,生成并标记提示。...数据准备的最后一步是将数据集分成单独的训练集和验证集: train_val = data["train"].train_test_split( test_size=200, shuffle=...然后在模型上调用torch.compile()函数,该函数编译模型的计算图并准备使用PyTorch 2进行训练。 训练过程在A100上持续了大约2个小时。
选自GitHub 机器之心编译 参与:刘晓坤、路雪 本文介绍了如何在 TensorFlow 上实现基础 LSTM 网络的详细过程。作者选用了 MNIST 数据集,本文详细介绍了实现过程。...我们的目的 这篇博客的主要目的就是使读者熟悉在 TensorFlow 上实现基础 LSTM 网络的详细过程。 我们将选用 MNIST 作为数据集。...其中的输入数据是一个像素值的集合。我们可以轻易地将其格式化,将注意力集中在 LSTM 实现细节上。 实现 在动手写代码之前,先规划一下实现的蓝图,可以使写代码的过程更加直观。...我们将网络按 28 个时间步展开,以使在每一个时间步中,可以输入一行 28 个像素(input_size),从而经过 28 个时间步输入整张图像。...代码 在开始的时候,先导入一些必要的依赖关系、数据集,并声明一些常量。设定 batch_size=128 、 num_units=128。
这将有助于更好地理解并帮助在将来为任何ML问题建立直觉。 ? 首先构建一个简单的自动编码器来压缩MNIST数据集。使用自动编码器,通过编码器传递输入数据,该编码器对输入进行压缩表示。...自动 编码器有两个组成部分:编码器:它具有从x到h的映射,即f(映射x到h) 解码器:它具有从h到r的映射(即映射h到r)。 将了解如何连接此信息并在几段后将其应用于代码。 ?...总是首先导入我们的库并获取数据集。...此外,来自此数据集的图像已经标准化,使得值介于0和1之间。 由于图像在0和1之间归一化,我们需要在输出层上使用sigmoid激活来获得与此输入值范围匹配的值。...检查结果: 获得一批测试图像 获取样本输出 准备要显示的图像 输出大小调整为一批图像 当它是requires_grad的输出时使用detach 绘制前十个输入图像,然后重建图像 在顶行输入图像,在底部输入重建
在最近的研究中,这两个算法与近200种其他算法在100多个数据集上的平均值相比较,它们的效果最好。 在这篇文章中,我们将回顾这个研究,并考虑一些测试算法在我们机器学习问题上的应用。...“,并于2014年10月在”机器学习研究杂志 “上发表。 在这里下载PDF。 在本文中,作者通过了121个标准数据集评估了来自UCI机器学习库的 来自17个类别(族)的179个分类器。...从论文摘要: 最有可能是最好的分类器是随机森林(RF)版本,其中最好的(在R中实现并通过插入符号访问)在84.3%的数据集中精度超过90%,最大达到了94.1%。...UCI机器中的数据集通常是标准化的,但是不足以在原始状态下用于这样的研究。 这已经在“ 关于为分类器准备数据的论述 ” 一文中指出。...我把精力集中在数据准备和整合足够好的现有模型上
图结构在现实世界中随处可见。道路、社交网络、分子结构都可以使用图来表示。图是我们拥有的最重要的数据结构之一。 今天有很多的资源可以教我们将机器学习应用于此类数据所需的一切知识。...Cora 数据集包含 2708 篇科学出版物,分为七类之一。...这样做以后数字也对不上,显然是因为“Cora 数据集有重复的边”,需要我们进行数据的清洗 另一个奇怪的事实是,移除用于训练、验证和测试的节点后,还有其他节点。...最后就是我们可以看到Cora数据集实际上只包含一个图。 我们使用 Glorot & Bengio (2010) 中描述的初始化来初始化权重,并相应地(行)归一化输入特征向量。...实际上这是因为这两个都不完全与 TensorFlow 中的原始实现相同,所以我们这里不考虑原始实现,只使用PyTorch Geometric提供的模型。
变分自编码器 (VAE) 是在图像数据应用中被提出,但VAE不仅可以应用在图像中。...在这篇文章中,我们将简单介绍什么是VAE,以及解释“为什么”变分自编码器是可以应用在数值类型的数据上,最后使用Numerai数据集展示“如何”训练它。...Numerai数据集数据集包含全球股市数十年的历史数据,在Numerai的锦标赛中,使用这个数据集来进行股票的投资收益预测和加密币NMR的收益预测。 为什么选择VAE?...自编码器由两个主要部分组成: 1)将输入映射为潜在空间的编码器 2)使用潜在空间重构输入的解码器 潜在空间在原论文中也被称为表示变量或潜在变量。那么为什么称为变分呢?...Numerai 训练数据集上的 KL 散度的直方图 这是MSE损失的直方图。 下图是Numerai 训练数据集的 KL 散度和均方误差的可视化。
介绍 最近开始在计算机视觉领域工作。在这些早期日子里,我们正在研究各种目标检测算法的工作原理。其中最知名的算法包括R-CNN、Fast R-CNN、Faster R-CNN和当然是YOLO。...此外,我们还将看到如何在自定义数据集上训练它,以便你可以将其适应你的数据。 Darknet 我们认为没有比你可以在他们的网站链接中找到的定义更好地描述Darknet了。...看一看,因为我们将使用它来在自定义数据集上训练YOLO。 克隆Darknet 我们将在本文中向你展示的代码是在Colab上运行的,因为我没有GPU…当然,你也可以在你的笔记本上重复这个代码。...我们在上一个单元格中设置的配置允许我们在GPU上启动YOLO,而不是在CPU上。现在我们将使用make命令来启动makefile。...其中每一行指示在哪里找到训练图像。 尽管我们指定的文件仍然是空的。所以我们将这些数据从我们下载的数据集文件夹复制到Darknet默认文件夹中。 !mkdir -p darknet/data/obj !
这里以鸢尾花数据集为例,讨论分类问题中的 kNN 的思想。...首先,导入鸢尾花数据集(两种方式,一种是下载鸢尾花数据集,然后从文件读取,我们采用第二种,直接从datasets中读取,返回的是字典格式的数据),并将鸢尾花数据集分为训练集和测试集。...test_size=0.2, random_state=20, shuffle=True) 为了方便理解 kNN,将鸢尾花的训练数据的前两个特征值...# 数据可视化 plt.scatter(X_train[y_train == 0][:, 0], X_train[y_train == 0][:, 1], color='r') plt.scatter(...,需要注意几个问题: 不同特征有不同的量纲,必要时需进行特征归一化处理 kNN 的时间复杂度为O(D*N*N),D 是维度数,N 是样本数,这样,在特征空间很大和训练数据很大时,kNN 的训练时间会非常慢
参考文献Tensorflow 机器学习实战指南[1] > 利用 Tensorflow 读取二进制 CIFAR-10 数据集[2] > Tensorflow 官方文档[3] > tf.transpose...CIFAR-10 二进制数据集上构建 CNN[13] 少说废话多写代码 下载 CIFAR-10 数据集 # More Advanced CNN Model: CIFAR-10 # -----------...# 参数 data指 post 到服务器的数据,该方法返回一个包含两个元素的(filename, headers)元组,filename 表示保存到本地的路径,header 表示服务器的响应头。...这和此数据集存储图片信息的格式相关。 # CIFAR-10数据集中 """第一个字节是第一个图像的标签,它是一个0-9范围内的数字。...-10二进制数据集上构建CNN: https://github.com/Asurada2015/TF_Cookbook/blob/master/08_Convolutional_Neural_Networks
在研究受试者对不同图表类型中百分比的感知时,"圆形切片 "的表现与饼图类似。月亮图与 "圆形切片 "的不同之处在于,后者是在一个基础圆上滑动第二个同样大小的圆盘,更像是月食而不是月相。...用法 ggplot2数据可视化包,为R语言中的月亮图提供支持。它们的绘制方式与ggplot2中的点最为相似:它们的位置由一个x和一个y坐标定义,它们的大小与坐标系无关,所以它们总是保持圆形。...两个新的美学在geom_moon中也很重要:比例和填充。 比例美学 比率控制要绘制的月亮的比例。它必须在0("新月",实际上什么都没画)和1("满月",即一个圆)之间。...饼图地图在人口遗传学中很流行,所以让我们看一下该领域的一个例子。数据包含果蝇种群中Adh基因的两个变体的频率。这些种群中有许多都很接近,所以我们必须处理过度绘制的问题,我们在下面手动处理。...月球数据 有时你只是想绘制月球的文字表述。改编自NASA的月球数据,包含了2019年每天从地球到月球的距离,以及月球四个主要阶段每次出现的日期(UTC)。
Hudi是在HDFS的基础上,对HDFS的管理和操作。支持在Hadoop上执行upserts/insert/delete操作。这里大家可能觉得比较抽象,那么它到底解决了哪些问题?...什么是Hudi Apache Hudi代表Hadoop Upserts anD Incrementals,管理大型分析数据集在HDFS上的存储。Hudi的主要目的是高效减少摄取过程中的数据延迟。...由Uber开发并开源,HDFS上的分析数据集通过两种类型的表提供服务:读优化表(Read Optimized Table)和近实时表(Near-Real-Time Table)。...它可以像任何作业一样进一步水平扩展,并将数据集直接存储在HDFS上。 Hudi的作用 上面还是比较抽象的话,接着我们来看下图,更形象的来了解Hudi ?...Hudi机制 存储机制 hudi维护了一个时间轴,记录了在不同时刻对数据集进行的所有操作。 hudi拥有2种存储优化。
贝叶斯定理在 Udacity 的机器学习入门课程的第 2 课中介绍:- ? 因为我想从课程中得到一些东西,所以我在互联网上进行了搜索,寻找一个适合使用朴素贝叶斯估计器的数据集。...在我的搜索过程中,我找到了一个网球数据集,它非常小,甚至不需要格式化为 csv 文件。 我决定使用 sklearn 的 GaussianNB 模型,因为这是我正在学习的课程中使用的估算器。...下面的屏幕截图显示了我绘制出所有列后的df。 我要注意的是,在我创建了这个程序之后,我回过头来对数据进行打乱,看看是否可以达到更高的精度,但在这种情况下,打乱没有效果。...模型经过训练和拟合后,我在验证集上进行了测试,并达到了 60% 的准确率。我不得不说,我个人希望获得更高的准确度,所以我在 MultinomialNB 估计器上尝试了数据,它对准确度没有任何影响。...也可以仅对一行数据进行预测。在下面的示例中,我对 ([2,1,1,0]) 进行了预测,得出的预测为 1,这与数据集中的数据相对应。 提高该模型准确性的一种方法是增加数据。
on-disk storage的方法来读取和存储130万单细胞的数据集,然后Sketching这个方法可以从130万单细胞的数据集里面抽样但是还保留数据集的特性。...查看和读取130万单细胞的数据集(h5文件) 案例的130万单细胞的数据集是10x公司在其官网提供的,链接是:https://support.10xgenomics.com/single-cell-gene-expression...,简单的进行基因id转换后就可以在Seurat里面创建 Seurat 对象。...write_matrix_dir: 将读取的单细胞转录组数据写入指定的目录。这一步的目的可能是将数据存储在磁盘上,以便后续的分析。 open_matrix_dir: 从指定目录中读取单细胞转录组数据。...这个时候还需要借助Sketching这个方法可以从130万单细胞的数据集里面抽样但是还保留数据集的特性,首先读取前面保存好的R语言里面的rds文件: # Read the Seurat object,
Video-Swin-Transformer 导言: 由于Transformer强大的建模能力,视觉任务的主流Backbone逐渐从CNN变成了Transformer,其中纯Transformer的结构也在各个视频任务的数据集上也达到了...另外,由于视频和图片本身就存在很大的联系,而且本文也在用了Swin Transformer结构,所以作者采用了在图片数据集上预训练好的模型模型来初始化,以提高视频模型的泛化能力。...本文提出的方法在广泛的视频识别基准数据集上实现了SOTA的准确性,包括动作识别(action recognition)和时间建模(temporal modeling)。...因为视频数据在时间和空间上存在局部性(也就是说:在时空距离上更接近的像素更有可能相关 ),所以作者在网络结构中利用了这个假设偏置,所以达到了更高的建模效率。...由于Video Swin Transformer改编于Swin Transformer,因此Video Swin Transformer可以用在大型图像数据集上预训练的模型进行初始化。
领取专属 10元无门槛券
手把手带您无忧上云