模型出错了,请稍后重试~
相信大家都玩过迷宫的游戏,对于简单的迷宫,我们可以一眼就看出通路,但是对于复杂的迷宫,可能要仔细寻找好久,甚至耗费数天,然后可能还要分别从入口和出口两头寻找才能找的到通路,甚至也可能找不到通路。
【导读】过去一个月里,我们对近 250 个 Python 开源项目进行了排名,并挑选出热度前 10 的项目。这份清单的平均 github star 数量高达 1333,涵盖了包括游戏开发、Crawler、终端 (Terminal)、视频下载 (ideo Download)、Social Mapper、Slack、Reconnaissance、推特用户 (Twitter)、类型检查 (Typer Check)等主题,希望你能从中找到一个你所感兴趣的项目深入探究。
开源库可以加快你开发软件的速度。抽出足够的时间来玩转一下过去一年优秀的开源Python库吧。
我们从近10000个python开源框架中评价整理的34个最为好用的开源框架,它们细分可以分为Python Toolkit、Web、Terminal、Code Editor、Debugging、complier、Data Related、Chart8类,分布情况如下图:
导读:踏着人工智能、区块链的东风,近年来一路“横冲直撞”的 Python 在实现了从小众语言到主流的完美转身后,进入 2019 依旧没有透出丝毫停下来的架势,反倒有些越烧越热的味道。本文将为你介绍 2019 年最值得关注的 34 个 Python 开源项目——Let's go!
标准模式下,从摄像头获取到图像数据,将该图像数据缓存到DDR中,再通过显示驱动模块将图像读取出来,在显示屏上进行显示。
图像旋转是指图像按照某个位置转动一定角度的过程,旋转中图像仍保持这原始尺寸。图像旋转后图像的水平对称轴、垂直对称轴及中心坐标原点都可能会发生变换,因此需要对图像旋转中的坐标进行相应转换。
随着各类图像旋转算法的层出不穷,图像旋转逐渐成为近年来各类赛事的热门赛 题。然而在基于 FPGA 的图像旋转设计方面,可行的方案较少。因此,我们本次采用了国产紫光同创的 PGL22G 这块开发板进行图像旋转方案的设计,制作成了一个完整的具有快速处理,实时显示的系统。本作品从图像旋转这一经典的问题出发,采用 CORDIC(Coordinate Rotation Digital Computer)算法,结合图传技术,实时显示技术,以 FPGA 作为核心处理器,通 过自制的上位机软件实现软件对硬件的精确控制,达到对摄像头采集的图像进行实时旋 转并且显示的目的,并且可以通过上位机对旋转后的图像进行显示模式,灰度阈值的设定。本设计的核心思路为:在图像旋转设计中,插入一个图像旋转模块。将从摄像头缓存的图像先读取出来,组合成一帧旋转的图像后再写入 ddr 中,再由显示驱动模块读取进行显示。
之前手眼标定数据不对,要分析找问题原因,这个过程还是有意思的。正值出差,搞起来也费劲。所以只能趁有兴致的时候多看点儿。总体思路是先参考别人已经成功的。本身opencv官方是有相机标定例程的,官方出版的。
经过昨天晚上的调试,发现了一个主要问题:使用圆网格标定板标定时,不能使用cornerSubPix()函数,否则寻找角点时,会导致图一的情况(裁剪为30万像素)。就找到能参考的程序,推进还是很快的。
初学图像处理,很多人遇到的第一关就是图像旋转,图像旋转是图像几何变换中最具代表性的操作,包含了插值、背景处理、三角函数等相关知识,一个变换矩阵跟计算图像旋转之后的大小公式就让很多开发者最后直接调用函数了事,但是其实这个东西并没有这么难懂,可以说主要是之前别人写的公式太吓人,小编很久以前第一次接触的也是被吓晕了!所以决定从程序员可以接受的角度从新介绍一下图像旋转基本原理与OpenCV中图像旋转函数操作的基本技巧。
1. Camera 采集画面并预览推流 : 这里注意 , 之前图像被逆时针旋转了 90 度 , 设置了图像传感器角度后 , 预览图片纠正过来了 , 但是 Camera 的图像传感器采集的 NV21 格式的图像还是被旋转了 90 度 ;
OpenCV在3.1.0版本中的图像放缩与旋转操作比起之前版本中更加的简洁方便,同时还提供多种插值方法可供选择。首先来看图像放缩,通过OpenCV核心模块API函数resize即可实现图像的放大与缩小。 一:图像放缩(zoom in/out) 函数resize相关API参数介绍 -src表示输入图像,类型一般是Mat类型 -dst表示输出图像,类型一般是Mat类型 -dsize表示输出图像大小,如果是零的话表示从fx与fy两个参数计算得到 dsize= Size(round(src.cols*fx), r
经过几个月的努力,小白终于完成了市面上第一本OpenCV 4入门书籍《从零学习OpenCV 4》。为了更让小伙伴更早的了解最新版的OpenCV 4,小白与出版社沟通,提前在公众号上连载部分内容,请持续关注小白。
寄语:本文将对传统图像算法的数据增广方式进行学习,以最常用的平移和旋转为例,帮助大家梳理几何变换的概念和应用,并对其在OpenCV的框架下进行了实现。
本文作者提出了一种自检督方式的生成对抗网络,通过辅助性的旋转损失来达到目的。因为通常主流方法来生成自然图像都是通过条件GAN来完成,但是这就需要很多的标签数据。这些标签数据会需要耗费大量时间和精力。因此无监督方法的提出,能有效提升效率节省大量时间和精力。作者探索了两个主流的无监督的学习方法,分别是对抗训练和自监督。进一步的,这两种方法会拉近无监督学习和监督学习的距离。
可以在扫描仪中放入若干照片并一次性扫描它们,这将创建一个图像文件。“裁剪并修齐照片”命令是一项自动化功能,可以通过多图像扫描创建单独的图像文件。
大数据文摘作品 编译:Zhifu、元元、Molly、钱天培 医学图像数据的质量一直是个老大难题。难以清理的数据制约着许多深度学习的应用。 而实际上,深度学习本身就是清洗医疗数据的好帮手。 今天,我们就来讲一个案例,展示如何用深度学习迅速清洗一个杂乱的医疗图像数据集。 案例的主角是胸部X光图像。 由于设备制造商的不同,胸部X光的图像有可能是水平的,也可能是垂直翻转的。他们可能会倒置像素值,也可能会旋转。问题在于,当你处理一个庞大的数据集(比如说50到100万张图像)的时候,如何在没有医生查看的情况下发现畸变?
在使用相机时,最自然的效果是不管你的手机如何旋转,手机上的成像始终是向上的,也就是说,相机内容不会随着相机的旋转和旋转。
python opencv如何旋转图片 函数用法 (h,w)=img2.shape[:2] center=(w//2,h//2) M=cv2.getRotationMatrix2D(center,30,1.0) img3=cv2.warpAffine(img2,M,(w,h)) 参数详解 1、由于两个图像在匹配时需要保证两个图像的大小相同。 2、在旋转图像时不能简单地旋转,要找出图像的中心点,绕中心点旋转,填补空白。 找中心点 (h,w)=img2.shape[:2] center=(w//2,h//2
上次写了图像变换-旋转问题,试一试?,后面留了个问题,本来就是随便说说的,留给大家一个探索的机会,刚好碰到最近事情也有点多,没空弄。
---- 新智元编译 编译:小潘 【新智元导读】医学图像数据很难处理,经常包含旋转倒置的图像。这篇文章介绍如何利用深度学习以最小的工作量来修复医疗影像数据集,缓解目前构建医疗 AI 系统中收集和清洗数据成本大的问题。 在医学成像中,数据存储档案是基于临床假设的。不幸的是,这意味着当你想要提取一个图像时,比如一个正面的胸部x光片,你通常会获得一个存储了许多其他图像的文件夹,并且没有简单的方法来对它们加以区分。 图1:这些图片来自于相同的文件夹是有道理的,因为在放射学中我们记录的是病例而非图像。这是病
牛顿第一运动定律:物体加速度的大小跟作用力成正比,跟物体的质量成反比,且与物体质量的倒数成正比;加速度的方向跟作用力的方向相同。该定律是由艾萨克·牛顿在1687年于《自然哲学的数学原理》一书中提出的。
该系列文章是讲解Python OpenCV图像处理知识,前期主要讲解图像入门、OpenCV基础用法,中期讲解图像处理的各种算法,包括图像锐化算子、图像增强技术、图像分割等,后期结合深度学习研究图像识别、图像分类、目标检测应用。
该部分将对基本的几何变换进行学习,几何变换的原理大多都是相似,只是变换矩阵不同,因此,我们以最常用的平移和旋转为例进行学习。在深度学习领域,我们常用平移、旋转、镜像等操作进行数据增广;在传统CV领域,由于某些拍摄角度的问题,我们需要对图像进行矫正处理,而几何变换正是这个处理过程的基础,因此了解和学习几何变换也是有必要的。
你必须在原地旋转图像,这意味着你需要直接修改输入的二维矩阵。请不要使用另一个矩阵来旋转图像。
2019年底,使用对比学习的自我监督学习研究论文数量激增。在2019年12月,Misra等人。来自Facebook AI Research的研究人员提出了一种新的方法PIRL来学习图像表示。
这是2018年ICLR发表的一篇论文,被引用超过1100次。论文的想法来源于:如果某人不了解图像中描绘的对象的概念,则他无法识别应用于图像的旋转。
它不仅能用来实现各种复杂的算法,还能够对图像进行预处理:包括图像的平移、旋转、缩放、翻转、裁剪。
OpenCV是一个跨平台计算机视觉和机器学习算法库。它不仅能用来实现各种复杂的算法,还能够对图像进行预处理:包括图像的平移、旋转、缩放、翻转、裁剪。希望把这些知识分享给初学者。
如果直接套用PIL和OpenCV3图像处理库的旋转函数,旋转后保存的图像会留黑边,下面给出我实际测试后旋转图像不留黑边的代码:
相机标定 相机的内参矩阵 在OpenCV的3D重建中(opencv中文网站中:照相机定标与三维场景重建),对摄像机的内参外参有讲解: 外参:摄像机的旋转平移属于外参,用于描述相机在静态场景下相机的运动
完整的notebook文档:https://github.com/IBBD/IBBD.github.io/blob/master/python/python-opencv-guidelines.ipynb
OpenCV这么简单为啥不学——1.6、图像旋转与翻转(rotate函数、imutils环境安装、imutils任意角度旋转)
工具栏 和 属性栏 : 左侧的是工具栏, 每选中一个工具, 在菜单栏的下部就会出现工具栏对应的属性栏;
OpenCV自带的旋转图像方法 (有损) 原图像: 如果用OpenCV自带cv2.warpAffine接口来实现图片旋转: import cv2 # 读取原图像 img = cv2.imrea
链接:48. 旋转图像 - 力扣(LeetCode) (leetcode-cn.com)
发布者:全栈程序员栈长,转载请注明出处:https://javaforall.cn/124836.html原文链接:https://javaforall.cn
Resize 图像缩放是把原图像按照目标尺寸放大或者缩小,是图像处理的一种。 图像缩放有多种算法。最为简单的是最临近插值算法,它是根据原图像和目标图像的尺寸,计算缩放的比例,然后根据缩放比例计算目标像素所依据的原像素,过程中自然会产生小数,这时就采用四舍五入,取与这个点最相近的点。 除此之外,还有双线性插值算法。 双线性插值,又称为双线性内插。在数学上,双线性插值是有两个变量的插值函数的线性插值扩展,其核心思想是在两个方向分别进行一次线性插值。 其公式如下:f(i+u,j+v) =(1-u)(1-v)f(i
这样我们就获得了变换后的图像! 我们将会把它显示出来. 在此之前, 我们还想要旋转它...
在前面讨论线性变换的时候,我们没有提到平移。什么是平移?以二维的平面为例,如图2-2-10所示,向量 就是向量 平移的结果,即连接两个图形的对应点的直线平行,则两个图形是平移变换。很显然,这种平移不是线性变换——向量 所在直线并不是平面空间的子空间。尽管如此,我们可以用矩阵加法表示图2-2-10所示的平移变换:
使用opencv对图像进行旋转的代码随手一搜即得,但是有些旋转后图像会不完整,有些只给出代码并未解释其实现原理。本文会详细介绍如何使用opencv实现图像旋转得到完整图像,以及其中的实现原理。
图像几何变换又称为图像空间变换,它将一副图像中的坐标位置映射到另一幅图像中的新坐标位置。我们学习几何变换就是确定这种空间映射关系,以及映射过程中的变化参数。图像的几何变换改变了像素的空间位置,建立一种原图像像素与变换后图像像素之间的映射关系,通过这种映射关系能够实现下面两种计算:
UIImage是IOS中层级比较高的一个用来加载和绘制图像的一个类,更底层的类还有CGImage,以及IOS5.0以后新增加的CIImage。今天我们主要聊一聊UIImage的三个属性: imageOrientation, size, scale,几个初始化的方法: imageNamed,imageWithContentsOfFile,以及绘制Image的几个draw开头的方法。
世界坐标系是在环境当中选定的一个三维坐标系,用于描述环境中任何物体的位置,符合右手坐标系。相机坐标系的原点位于镜头的光心,x,y轴分别与相机的边缘平行,z轴为垂直于成像平面的光轴。世界坐标系到相机坐标系属于刚体变换,即只发生平移及旋转,属于3D到3D的转换。
作为 CV 重要的组成部分,人脸检测旨在利用卷积神经网络从人脸图像中抽取足够的信息。然而虽然 CNN 能高效处理图像数据,但大多数情况下它的设计都是针对一般图像处理任务。卷积网络本身并不会太考虑旋转等情况,即使考虑也只是通过数据增强稍微优化一点。在这个项目及对应的论文中,作者提出并实现了一种完全旋转平面(RIP)不变的人脸检测。如下图所示它能检测出人脸的正确朝向,并从任何 RIP 角度捕获面部检测框。
北京现代拥有3 座整车生产工厂、3 座发动机生产工厂和1 座承担自主研发的技术中心。北京现代拥有近300 台机器人,分别应用在车身焊接、车身冲压、发动机组装、涂装等各种关键工位中。公司依靠先进的自动化制造装备,保障100%焊接与运输自动化率,100%自动化冲压生产,确保车身焊接质量与车身强度。 在发动机生产工厂,汽车发动机的缸体搬运工作是由韩国现代公司制造的机器人来进行。在引导机器人进行缸体搬运时,采用的是由韩方定制的工业相机+视觉软件的方式。在生产过程中,遇到了棘手问题,主要是:相机拍照一次检测不成功,需
原文链接:http://blog.csdn.net/humanking7/article/details/44756073
AI科技评论按:最近微博上的全景照片很火呀,相比各位都已经在自己的iPhone或者iPad上品鉴了多家IT公司的办公室、游玩了多个旅游胜地、享受了被小猫小狗环绕的感觉了。太平洋那头的Facebook也没闲着,从去年上线类似的功能以后,全世界 Facebook 用户们已经上传了七千万张全景照片了。 Facebook 支持多种全景照片和全景视频的拍摄方式,可以让人们把自己的全方位感受分享给好朋友们。如果用户有一个专门的全景摄像机,比如理光Theta S或者Giroptic iO,还可以直接把相机里的照片发布
领取专属 10元无门槛券
手把手带您无忧上云