首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

AI框架跟计算图什么关系?PyTorch如何表达计算图?

最后简单地学习PyTorch如何表达计算图。视频、文章、PPT都开源在:chenzomi12.github.ioAI系统化问题遇到的挑战在真正的 AI 工程化过程中,我们会遇到诸多问题。...(b)为对应(a)的反向计算图,在神经网络模型训练的过程当中,自动微分功能会为开发者自动构建反向图,然后输入输出完整一个完整step计算。...在这里的计算图其实忽略了2个细节,特殊的操作:如:程序代码中的 For/While 等构建控制流;和特殊的边:如:控制边表示节点间依赖。...PyTorch计算图动态计算图在Pytorch的计算图中,同样由节点和边组成,节点表示张量或者函数,边表示张量和函数之间的依赖关系。其中Pytorch中的计算图是动态图。这里的动态主要有两重含义。...下次调用需要重新构建计算图。

86430
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    PyTorch: 计算图与动态图机制

    本文已收录于Pytorch系列专栏: Pytorch入门与实践 专栏旨在详解Pytorch,精炼地总结重点,面向入门学习者,掌握Pytorch框架,为数据分析,机器学习及深度学习的代码能力打下坚实的基础...文章目录 计算图 PyTorch的动态图机制 计算图 计算图是用来描述运算的有向无环图 计算图有两个主要元素: 结点 Node 边 Edge 结点表示数据:如向量,矩阵,张量 边表示运算:如加减乘除卷积等...用计算图表示:y = (x+ w) * (w+1) a = x + w b = w + 1 y = a * b 计算图与梯度求导 y = (x+ w) * (w+1) a = x + w...计算图与梯度求导 y = (x+ w) * (w+1) 叶子结点 :用户创建的结点称为叶子结点,如 X 与 W is_leaf: 指示张量是否为叶子结点 叶子节点的作用是标志存储叶子节点的梯度,而清除在反向传播过程中的变量的梯度...的动态图机制 根据计算图搭建方式,可将计算图分为动态图和静态图 动态图 运算与搭建同时进行 灵活 易调节 例如动态图 PyTorch: 静态 先搭建图, 后运算 高效 不灵活。

    2.4K10

    PyTorch 的自动求导与计算图

    为了高效地计算梯度,PyTorch 提供了强大的自动求导机制,这一机制依赖于“计算图”(Computational Graph)的概念。 1. 什么是计算图?...PyTorch 会自动构建这个计算图,随着你对张量进行操作,图会动态扩展。 2. PyTorch 中的计算图 在 PyTorch 中,计算图是动态构建的。...这意味着每次运行前向传播时,PyTorch 都会根据实际的操作构建计算图。这与其他静态图框架(如 TensorFlow 的早期版本)不同,后者需要先定义完整的图,然后再运行计算。...它告诉我们如何计算复合函数的导数。...5.2 控制流中的求导 PyTorch 的自动求导机制同样可以处理控制流,比如条件语句和循环。对于动态计算图,控制流可以使得每次前向计算的图结构不同,但 PyTorch 依然能够正确计算梯度。

    18210

    【PyTorch】PyTorch如何构建和实验神经网络

    作者 | Tirthajyoti Sarkar 来源 | Medium 编辑 | 代码医生团队 介绍 在本文中,将展示一个简单的分步过程,以在PyTorch中构建2层神经网络分类器(密集连接),从而阐明一些关键功能和样式...PyTorch为程序员提供了极大的灵活性,使其可以在张量流过网络时创建,组合和处理张量…… 核心组成 用于构建神经分类器的PyTorch的核心组件是 张量(在PyTorch中央数据结构) Tensor...除CPU外,它们还可以加载到GPU中(只需极其简单的代码更改)即可进行更快的计算。并且它们支持形成一个向后图,该图跟踪使用动态计算图(DCG)应用于它们的每个操作以计算梯度。...PyTorch能够进行实验,探查,弄碎和晃动物品。 只是为了好玩,如果想检查输出层概率在多个时期内如何演变,只需对前面的代码进行简单的修改就可以了, ? ?...还展示了如何使用此框架轻松地尝试巧妙的想法。

    1K20

    如何构建边缘计算平台?

    如果人们了解边缘计算领域发生了什么,可能已经注意到没有边缘计算厂商和用例这些常见分类。而边缘计算这个新的市场和空间,得到了很多企业和用户的关注。...安全厂商将为客户构建全球软件定义的广域网,以连接他们的数据中心、云计算提供商、办公楼和移动工作人员。...花费 2500美元构建全球平台 Crosby预计,媒体、游戏和安全将成为使用StackPath等边缘计算服务的最大用户。...还有数百家软件初创公司正在构建DNS服务、SD-WAN、V**、负载平衡器、防火墙、应用程序加速器等。 “他们都有很棒的软件,但他们没有办法进入全球平台,所以很难与大型公司进行竞争。”...Crosby说,“现在用户可以进入我们的网站,购买50个虚拟机,每个虚拟机的价格为50美元,因此用户可以花费2500美元构建一个全球平台。” (来源:企业网D1Net)

    1.9K30

    PyTorch如何构建和实验神经网络

    作者 | Tirthajyoti Sarkar 来源 | Medium 介绍 在本文中,将展示一个简单的分步过程,以在PyTorch中构建2层神经网络分类器(密集连接),从而阐明一些关键功能和样式。...PyTorch为程序员提供了极大的灵活性,使其可以在张量流过网络时创建,组合和处理张量…… 核心组成 用于构建神经分类器的PyTorch的核心组件是 张量(在PyTorch中央数据结构) Tensor...除CPU外,它们还可以加载到GPU中(只需极其简单的代码更改)即可进行更快的计算。并且它们支持形成一个向后图,该图跟踪使用动态计算图(DCG)应用于它们的每个操作以计算梯度。...PyTorch能够进行实验,探查,弄碎和晃动物品。 只是为了好玩,如果想检查输出层概率在多个时期内如何演变,只需对前面的代码进行简单的修改就可以了, ? ?...还展示了如何使用此框架轻松地尝试巧妙的想法。

    81740

    Pytorch 如何计算三角函数

    2、sin值计算方法pytorch中的sin计算都是基于tensor的,所以无论单个值还是多个值同时计算sin值,都需要首先将输入量转换为tensor使用指令:【torch.sin(tensor)】实例中...3、cos值计算方法pytorch中的cos计算都是基于tensor的,所以无论单个值还是多个值同时计算cos值,都需要首先将输入量转换为tensor使用指令:【torch.cos(tensor)】实例中...4、tan值计算方法pytorch中的tan计算都是基于tensor的,所以无论单个值还是多个值同时计算tan值,都需要首先将输入量转换为tensor使用指令:【torch.tan(tensor)】实例中...5、arcsin值计算方法pytorch中的反正弦计算都是基于tensor的,所以无论单个值还是多个值同时计算反正弦值,都需要首先将输入量转换为tensor使用指令:【torch.asin(tensor...6、arccos值计算方法pytorch中的反余弦计算都是基于tensor的,所以无论单个值还是多个值同时计算反余弦值,都需要首先将输入量转换为tensor使用指令:【torch.acos(tensor

    2.1K10

    如何计算图的最短路径?

    ., >, 其中当 时,有 ( , ) E; 路径的权重:w(p)= ; 加上权重的数学表示方式 边存在权重的图:G(V,E,W) ,W是一个函数,作用于边,生成一个实数,即W(E)->R...对于有向图来讲,假设有两个顶点,v1,v2,他们之间只有4种连接情况,依次类推 为什么会有负的权重? 比如社交网络上的喜欢可以看做是正的权重,比喜欢可以看做是负的权重 负权重的边带来什么问题?...)需要执行减少的总次数为1+2+4+...+ = ,也就是说,会执行的次数为指数级别 最短路径算法的一般思路问题二:负权重环 如果在源点到目标节点经过的路径上,经过环会导致权重减少,这个算法不会结束 如何获取有向无环图...因此只有最后两个节点的路径值被更新 继续往右执行Relax 继续往右执行Relax 至此执行完毕,可以看到源点到所有节点的最短路径,从左到右分别是 ,0,2,6,5,3 如果图中有环,但是经过这个环不会导致权重减少,如何计算最短路径...不能,因为Bellman-Ford对于存在负权重的环的时候只会抛出异常,并没有计算路径,这实际是一个N-P的问题,即花的时间在指数级别或者之上 类似的,如果要求不经过负权重的环的情况下,计算最短路径,

    10210

    【小白学习PyTorch教程】二、动态计算图和GPU支持操作

    「@Author:Runsen」 动态计算图 在深度学习中使用 PyTorch 的主要原因之一,是我们可以自动获得定义的函数的梯度/导数。 当我们操作我们的输入时,会自动创建一个计算图。...该图显示了如何从输入到输出的动态计算过程。 为了熟悉计算图的概念,下面将为以下函数创建一个: 图片 . 在下面的代码中,我将使用[1,2,3]作输入。....], requires_grad=True) 现在让我来一步一步地构建计算图,了解每个操作是到底是如何添加到计算图中的。...计算图通常以相反的方向可视化(箭头从结果指向输入)。...我们可以通过backward()在最后一个输出上调用函数来对计算图执行反向传播,这样可以,计算了每个具有属性的张量的梯度requires_grad=True: y.backward() 最后打印x.grad

    78720

    分布式图计算如何实现?带你一窥图计算执行计划

    图的遍历 我们一般说的的图算法是指在图结构上进行迭代计算的计算过程,例如有最短路径算法、最小生成树算法、PageRank算法等。 这些算法往往用于解决图上的特定一类问题。...然而,还有一类被广泛使用的'图算法',它们也通过迭代计算处理,且在实际应用中有着广泛的应用,如金融风险管理、社交网络分析等。 它们就是图遍历,又被称之为Traversal。...分布式图遍历执行计划 图数据的规模往往十分庞大,例如Github交互的图规模可以到达数百TB规模,金融交易数据的规模可以达到万亿规模。如此复杂的图无法通过单机完成遍历计算。...这里以蚂蚁集团开源的图计算系统GeaFlow(品牌名为TuGraph-Analytics)为例,感兴趣的同学文末有开源地址。...图片 总结 本文介绍了GeaFlow图计算引擎如何使用GQL图查询语言进行走图查询,并介绍了几类查询语句对应生成的图计算执行计划。

    42020

    【NLP】Pytorch构建神经网络

    关于torch.nntorch.nn是PyTorch(一个流行的开源深度学习库)中的一个模块,用于构建神经网络模型。...这些层和函数可以被灵活地组合以构建各种类型的神经网络模型。除了层和函数之外,torch.nn模块还提供了各种工具和类,用于处理输入数据、定义损失函数、计算优化算法等。...构建神经网络的基本流程构建神经网络的一般流程如下:数据准备:首先,你需要准备好用于训练神经网络的数据集。...PyTorch提供了一些方便的方法来初始化参数,例如使用torch.nn.init模块中的函数进行参数初始化。定义损失函数:选择适当的损失函数来衡量模型的预测结果与实际标签之间的差异。...将输入数据传递给模型,并计算模型的输出。b. 将模型输出与实际标签进行比较,计算损失函数的值。c. 根据损失函数的值,使用反向传播算法计算梯度。d. 使用优化器更新模型的参数。

    46710

    PyTorch 揭秘 :构建MNIST数据集

    火种一:PyTorch的简洁性 对于初学者来说,PyTorch的简洁易懂是它的一大卖点。...火种二:动态计算图的强大 PyTorch使用动态计算图(Dynamic Computation Graph),也就是说,图的构建是在代码运行时动态进行的,这允许你进行更为直观的模型构建和调试。...这让PyTorch在处理可变长度的输入,如不同长度的文本序列或时间序列数据时,显得游刃有余。动态图的特性也使得在网络中嵌入复杂的控制流成为可能,比如循环和条件语句,这些都是静态图难以做到的。...火种四:实践举例 看一个实际的例子,如何用PyTorch来构建一个卷积神经网络(CNN)来识别手写数字,也就是著名的MNIST数据集: python import torch.optim as optim...小结 PyTorch 以其简洁性、强大的动态计算图和活跃的社区支持让学习和研发都变得轻松。我们还通过构建一个CNN模型来识别MNIST数据集中的手写数字,讲述了整个模型的设计、训练和评估过程。

    24510

    【深度学习】Pytorch教程(十三):PyTorch数据结构:5、张量的梯度计算:变量(Variable)、自动微分、计算图及其可视化

    一、前言   本文将介绍张量的梯度计算,包括变量(Variable)、自动微分、计算图及其可视化等 二、实验环境   本系列实验使用如下环境 conda create -n DL python==...计算图 计算图是一种用来表示数学运算过程的图形化结构,它将数学计算表达为节点和边的关系,提供了一种直观的方式来理解和推导复杂的数学运算过程。...在深度学习中,计算图帮助我们理解模型的训练过程,直观地把握损失函数对模型参数的影响,同时为反向传播算法提供了理论基础。...现代深度学习框架如 PyTorch 和 TensorFlow 都是基于计算图的理论基础构建出来的。...一个完整的计算图可以分为正向传播和反向传播两个阶段: 正向传播(Forward Propagation):输入数据经过计算节点逐层传播,最终得到输出结果。

    39410
    领券