首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

盘一盘 Python 系列 3 - SciPy

0 引言 本文是 Python 系列的第五篇 Python 入门篇 (上) Python 入门篇 (下) 数组计算之 NumPy (上) 数组计算之 NumPy (下) 科学计算之 SciPy 数据结构之...是 Python 里处理科学计算 (scientific computing) 的包,使用它遇到问题可访问它的官网 (https://www.scipy.org/)....我们希望找到一个函数 f(x) 来拟合这 N 个数据点,对于分段函数,因为有 N 个数据点,需要 N -1 段函数。...模型中的均值回归率和波动率的波动率) 上插值 (模型参数通常只用常数和分段常函数,但后者比前者能更好的拟合市场数据,因为它有更多自由度)。...的解析解很容易: 这里需要引入 scipy.stats 下的 norm 库,使用里面 cdf 函数来计算正态分布的累积分布概率。

3.3K80

如何使用Python曲线拟合

在Python中进行曲线拟合通常涉及使用科学计算库(如NumPy、SciPy)和绘图库(如Matplotlib)。...下面是一个简单的例子,演示如何使用多项式进行曲线拟合,在做项目前首先,确保你已经安装了所需的库。1、问题背景在Python中,用户想要使用曲线拟合来处理一组数据点。...2、解决方案2.1 曲线拟合用户可以使用Python中的numpy和scipy库来进行曲线拟合。...以下代码片段展示了如何使用指定函数类型进行曲线拟合:import numpy as npimport scipy as spfrom scipy.optimize import curve_fit​def...用户需要指定要拟合的函数类型,以及要拟合的数据。curve_fit()函数会自动计算拟合参数,并返回最佳拟合参数和拟合协方差矩阵。在这个例子中,我们首先生成了一些带有噪声的示例数据。

43910
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    Scipy 中级教程——优化

    Python Scipy 中级教程:优化 Scipy 提供了多种优化算法,用于求解最小化或最大化问题。这些问题可以涉及到拟合模型、参数优化、函数最优化等。...在本篇博客中,我们将深入介绍 Scipy 中的优化功能,并通过实例演示如何应用这些算法。 1. 单变量函数最小化 假设我们有一个单变量函数,我们想要找到使其取得最小值的输入。...minimize_scalar 函数会返回一个包含最小值和最优点的结果对象。 2. 多变量函数最小化 对于多变量函数的最小化,我们可以使用 scipy.optimize.minimize 函数。...constraint_definition 是约束条件的定义,类型为 ‘ineq’ 表示不等式约束。 4. 曲线拟合 Scipy 还提供了曲线拟合的工具,可以用于找到最适合一组数据的函数。...curve_fit 函数会返回拟合参数。 5. 总结 Scipy 的优化模块提供了多种工具,适用于不同类型的优化问题。通过本篇博客的介绍,你可以更好地理解和使用 Scipy 中的优化功能。

    40510

    Scipy和Numpy的插值对比

    技术背景 插值法在图像处理和信号处理、科学计算等领域中是非常常用的一项技术。不同的插值函数,可以根据给定的数据点构造出来一系列的分段函数。...这一点有别于函数拟合,函数拟合一般是指用一个给定形式的连续函数,来使得给定的离散数据点距离函数曲线的总垂直距离最短,不一定会经过所有的函数点。...给定两个点 和 ,其中 ,假如需要计算点 的值,其中 ,那么给定的插值公式就是: \begin{align} X_{t_2}&=(X_{t_1}-X_{t_0})*\frac{t_2...: 在这个结果中我们发现,numpy的线性插值和scipy的线性插值所得到的结果是一样的,而scipy的三次样条插值的曲线显然要比线性插值更加平滑一些,这也跟三次样条插值算法本身的约束条件有关系。...在python的scipy这个库中实现了线性插值算法和三次样条插值算法,而numpy库中实现了线性插值的算法,我们通过这两者的不同使用方式,来看下所得到的插值的结果。

    3.6K10

    走过19年,每年千万下载量,科学计算开源库SciPy的前世今生

    在获取数据之后,进行各种统计学分析很多都可以用 Scipy 完成,具体而言: 研究者根据发病日期构建传染曲线; 使用对数高斯分布拟合暴露历史和发病日期数据,估计潜伏期分布; 使用韦伯分布拟合发病日期、首次就诊日期和住院日期...我们可以用更少的算力运行更大的矩阵计算,用更精简的方式拟合更复杂与多样的概率分布,也可以跑一跑最新的最优化方法。研究者在这篇论文中着重介绍了 SciPy 一路走来的关键技术。...统一捆绑到已编译代码:LowLevelCallable 到了 SciPy 0.19,用户就可以直接使用 scipy.LowLevelCallable 对象包装底层函数,从而减少直接从 Python 调用已编译...该实现依赖于一个一致的框架,该框架提供了抽样随机变量的方法,用以评估累积分布函数指数(CDF)和概率密度函数指数(PDF),并适合每一个分布的参数。...尽管如此,SciPy 依然在继续进步。下图的表格是一个持续更新的文档,描述了团队正在项目中进行改进和提升的工作。这份文档也提到了一些需要改进的地方。 ?

    72831

    走过19年,每年千万下载量,科学计算开源库SciPy的前世今生

    在获取数据之后,进行各种统计学分析很多都可以用 Scipy 完成,具体而言: 研究者根据发病日期构建传染曲线; 使用对数高斯分布拟合暴露历史和发病日期数据,估计潜伏期分布; 使用韦伯分布拟合发病日期、首次就诊日期和住院日期...我们可以用更少的算力运行更大的矩阵计算,用更精简的方式拟合更复杂与多样的概率分布,也可以跑一跑最新的最优化方法。研究者在这篇论文中着重介绍了 SciPy 一路走来的关键技术。...统一捆绑到已编译代码:LowLevelCallable 到了 SciPy 0.19,用户就可以直接使用 scipy.LowLevelCallable 对象包装底层函数,从而减少直接从 Python 调用已编译...该实现依赖于一个一致的框架,该框架提供了抽样随机变量的方法,用以评估累积分布函数指数(CDF)和概率密度函数指数(PDF),并适合每一个分布的参数。...尽管如此,SciPy 依然在继续进步。下图的表格是一个持续更新的文档,描述了团队正在项目中进行改进和提升的工作。这份文档也提到了一些需要改进的地方。 ?

    91631

    机器学习算法实践:树回归

    ferr是计算数据集不纯度的函数,不同的树模型该函数也会不同,对于回归树,此函数计算数据集的方差来判定数据集的纯度,而对于模型树来说我们需要计算线性模型拟合程度也就是线性模型的残差平方和。...创建回归树并可视化 看到这种分段的数据,回归树拟合它可是最合适不过了,我们创建回归树: ? 通过Python字典表示的回归树结构: ?...如果一棵树的节点过多则表明该模型可能对数据进行了“过拟合”。那么我们需要降低决策树的复杂度来避免过拟合,此过程就是剪枝。剪枝技术又分为预剪枝和后剪枝。...后剪枝 预剪枝技术需要用于预先指定参数,但是后剪枝技术则是通过测试数据来自动进行剪枝不需要用户干预因此是一种更理想的剪枝技术,但是我们需要写剪枝函数来处理。...在模型树里针对一个叶子节点我们需要使用分割到的数据进行线性回归得到线性回归系数而不是简单的计算数据的平均值。不纯度的计算也不是简单的计算数据的方差,而是计算线性模型的残差平方和。

    1.7K90

    用Python进行机器学习小案例

    用NumPy有效地咀嚼数据,用SciPy智能地吸收数据 Python是一个高度优化的解释性语言,在处理数值繁重的算法方面要比C等语言慢很多,那为什么依然有很多科学家和公司在计算密集的领域将赌注下在Python...因为Python可以很容易地将数值计算任务分配给C或Fortran这些底层扩展。其中NumPy和SciPy就是其中代表。...用简单直线来拟合数据 我们现在假设该数据的隐含模型是一条直线,那么我们还如何去拟合这些数据来使得逼近误差最小呢?...SciPy的polyfit()函数可以解决这个问题,给出x和y轴的数据,还有参数order(直线的order是1),该函数给出最小化逼近误差的模型的参数。...相对于高阶多项式曲线的过拟合现象,对于低阶的曲线,由于没有很好的描述数据,而导致欠拟合的情形。所以为了更好的描述数据特征,使用2阶曲线来拟合数据,来避免过拟合和欠拟合现象的发生。

    1.9K90

    Scipy 中级教程——插值和拟合

    Python Scipy 中级教程:插值和拟合 Scipy 提供了丰富的插值和拟合工具,用于处理实验数据、平滑曲线、构建插值函数等。...在本篇博客中,我们将深入介绍 Scipy 中的插值和拟合功能,并通过实例演示如何应用这些工具。 1. 插值 插值是通过已知的数据点推断在这些数据点之间的值。...np.polyfit 函数拟合了一个二次多项式,最后计算了在新的 x 值上对应的 y 值。...拟合参数 a:", a_fit) print("拟合参数 b:", b_fit) print("拟合参数 c:", c_fit) # 计算对应的 y 值 y_fit = target_function...curve_fit 函数会返回拟合参数。 5. 总结 通过本篇博客的介绍,你可以更好地理解和使用 Scipy 中的插值和拟合工具。这些功能在处理实验数据、平滑曲线以及构建数学模型等方面具有广泛的应用。

    65010

    手把手教你用Python进行回归(附代码、学习资料)

    下面我们来看一个普遍使用的基函数:分段多项式。 分段多项式 首先,分段多项式在X的不同范围内拟合的是不同的低阶多项式,而不是像分段阶梯函数那样拟合常数。...由于我们使用的多项式次数较低,因此不会观察到曲线有什么大的震荡。 比如:分段二次多项式通过拟合二次回归方程来起作用: ? 上式中的系数β0、β1还有β2在X的不同区间内是取值不一样的。...比如:可以改用分段线性函数,实际上,上面使用的阶梯函数是0阶的分段多项式。 下面我们来看看构建分段多项式时应遵循的一些必要条件和约束。...为了将这种曲线的平滑性延伸到边界之外的节点上,我们将使用被称为自然样条的特殊类型样条。 自然三次样条又多一个约束条件,即:要求函数在边界之外是线性的。...如何选取确定节点的数量和位置 当我们拟合一个样条曲线时,该如何选取节点呢?一个可行的方法是选择那些剧烈变化的区域,因为在这种地方,多项式的系数会迅速改变。

    4.1K60

    SciPy从入门到放弃

    SciPy简介 SciPy是一种以NumPy为基础,用于数学、工程及许多其他的科学任务的科学计算包,其使用的基本数据结构是由NumPy模块提供的多维数组,因此Numpy和SciPy协同使用可以更加高效地解决问题...曲线拟合 下面将通过最小二乘法拟合余弦函数。...首先定义拟合函数图形以及误差函数,用于拟合的函数图形定义为下式,其中a、K、b为参数,整个拟合过程代码如下: f(x)=asin⁡(2K*π+b) #定义拟合函数图形 def func(x,m):...,用上式定义的函数图像进行拟合,可以得到拟合函数曲线的三个参数对应的值:a= 20.07,K= 0.499,b= 0.786,将结果可视化,如图所示。...统计模块 下面结合例子学习如何使用SciPy实现直方图和概率密度函数以及统计检验。

    7610

    数学建模--拟合算法

    拟合算法是数学建模和数据分析中的一种重要方法,其目标是找到一个函数或曲线,使得该函数或曲线在某种准则下与给定的数据点最为接近。拟合算法可以用于数据预处理、模型选择和预测等多个领域。...拟合与插值的区别 拟合和插值是两种不同的概念。插值要求所求的函数必须经过所有给定的数据点,而拟合则不需要经过所有数据点,只要误差足够小即可。...Python也有相应的库,如NumPy和SciPy,提供线性拟合、多项式拟合和对数拟合等功能。...此外,构造的曲线是二次连续的,这意味着在每两个相邻数据点之间插入一段三次函数,并且这些函数满足一定的数学条件,从而确保整体曲线的平滑性。...通过调整插值点的位置,可以精确地控制拟合曲线的形状。这使得三次样条曲线在需要精细调整的情况下特别有用。

    13210

    Python 机器学习算法实践:树回归

    节点的数据量小于预先定好的阈值 回归树的Python实现 本部分使用Python实现简单的回归树,并对给定的数据进行回归并可视化回归曲线和树结构。...ferr是计算数据集不纯度的函数,不同的树模型该函数也会不同,对于回归树,此函数计算数据集的方差来判定数据集的纯度,而对于模型树来说我们需要计算线性模型拟合程度也就是线性模型的残差平方和。...那么我们需要降低决策树的复杂度来避免过拟合,此过程就是剪枝。剪枝技术又分为预剪枝和后剪枝。 预剪枝 预剪枝是在生成决策树之前通过改变参数然后在树生成的过程中进行的。...在模型树里针对一个叶子节点我们需要使用分割到的数据进行线性回归得到线性回归系数而不是简单的计算数据的平均值。不纯度的计算也不是简单的计算数据的方差,而是计算线性模型的残差平方和。...总结 本文对决策树用于连续数值的回归预测进行了介绍,并实现了回归树, 剪枝和模型树以及相应的树结构输出可视化等。对于模型树也给予了相应的Python实现并针对分段线性数据进行了回归测试。

    1.3K91

    2025MCM美国大学生数学建模竞赛A题-楼梯磨损估计思路详解+建模论文+源代码

    定义模型函数:给定一组可调参数 θ,计算模型预测的磨损曲线。...使用最小二乘拟合:通过 scipy.optimize.curve_fit(或其他方法)对模型参数进行估计。 # --------------------------------- # 2....4.2Python 仿真与数据生成 下列代码分为四步: 设定真实的分段使用参数(阶段 I、阶段 II、翻修“回退”量); 计算每个阶段在踏步各位置 xxx 的累计磨损; 叠加随机噪声,得到模拟“观测数据...”; (可选)使用最小二乘或分段模型进行拟合,并输出拟合结果。...考古推断层面 若能通过对散点和理想曲线的拟合,较好地恢复“分段使用”+“翻修”的模型,就可进一步量化各阶段的人流规模(如阶段II明显高于阶段I),并确认翻修时段大致在第 10 年左右。

    85840

    用Python拟合两个高斯分布及其在密度函数上的表现

    要拟合两个高斯分布并可视化它们的密度函数,您可以使用Python中的scipy.stats模块来拟合分布,并使用matplotlib来绘制密度函数。...下面我将演示了如何拟合两个高斯分布并绘制它们的密度函数:1、问题背景用Python拟合两个重叠的高斯分布,使用分布函数比使用密度表示拟合效果更好。将拟合结果转换回密度表示时,结果看起来不合理。...2、解决方案使用核密度估计方法,利用scipy.stats.kde.gaussian_kde函数进行高斯分布的密度估计。...而核密度估计出的密度曲线也与原始数据吻合得很好,这表明核密度估计方法可以用于估计两个重叠的高斯分布的密度。...这段代码首先生成了两个高斯分布的随机数据,然后使用curve_fit函数拟合高斯函数,最后绘制了原始数据的直方图以及拟合的两个高斯分布的密度函数。您可以根据需要调整参数和绘图样式。

    33210

    Python 在信号处理中的优势之二

    在极少数情况工具箱只使用一个功能是很昂贵的! 那么你一年需要两到三次曲线拟合工具吗?这还不足以证明购买价值 1000 美元的曲线配件工具箱的合理性。...并且通常在工具箱中存在真正应该在核心 MATLAB 发布的普通函数。举个例子:norminv() 函数位于统计工具箱中;它可以通过使用MATLAB内置的 erfinv() 函数轻松计算出来。...numpy / scipy / pandas 库与 MATLAB 外加一堆工具箱差不多。例如,我最近能够使用 scipy 的一些三次样条拟合函数。...除非我有曲线拟合工具箱,否则我无法在 MATLAB 中做同样的事情。 免费!...使用Python需要放弃的一些东西 以下所有问题都是由于 numpy 是 Python 的附加库,而不是该语言的一流功能所导致的。

    1.9K00

    【6】python生成数据曲线平滑处理——(Savitzky-Golay 滤波器、convolve滑动平均滤波)方法介绍,推荐玩强化学习的小伙伴收藏

    相关文章: Python xlwt数据保存到 Excel中以及xlrd读取excel文件画图  先上效果图:  由于高频某些点的波动导致高频曲线非常难看,为了降低噪声干扰,需要对曲线做平滑处理,让曲线过渡更平滑...mode:{‘full’, ‘valid’, ‘same’}参数可选,该参数指定np.convolve函数如何处理边缘。...Savitzky-Golay 滤波器实现曲线平滑 对曲线进行平滑处理,通过Savitzky-Golay 滤波器,可以在scipy库里直接调用,不需要再定义函数。...例如:此处取值53 k值:polyorder为对窗口内的数据点进行k阶多项式拟合,k的值需要小于window_length。例如:此处取值3 mode:确定了要应用滤波器的填充信号的扩展类型。...这种滤波器的 最大特点:在滤除噪声的同时可以确保信号的形状、宽度不变 使用平滑滤波器对信号滤波时,实际上是拟合了信号中的低频成分,而将高频成分平滑出去了。

    3K30

    数学建模--插值算法

    插值算法在数学建模中是一种重要的技术,广泛应用于数据拟合、曲线拟合、数据预测以及各种科学计算中。...三次样条插值是一种分段多项式插值方法,每个区间使用三次多项式,并保证在各节点处的一阶和二阶导数连续。这种方法可以有效避免高次多项式插值可能出现的龙格现象。...应用场景: 线性插值:适用于图像处理、数值分析等领域中对精度要求不高的场合。 多项式插值:适用于工程计算中需要高精度的经验曲线近似公式,如密集性插值计算等。...总结来说,如果需要快速处理大量数据且对图像质量要求不高,可以选择最近邻插值; 使用Python实现的插值算法有哪些高效库或工具,以及它们的优缺点是什么?...以下是一些主要的库及其优缺点: NumPy: 优点:NumPy是Python中用于科学计算的基础库,提供了强大的数组操作功能和一些基本的数学函数。

    17910

    python中的scipy模块

    因为枚举scipy中不同的子模块和函数非常无聊,我们集中精力代之以几个例子来给出如何使用scipy进行计算的大致思想。...scipy.fftpack.fftfreq()函数将生成取样频率,scipy.fftpack.fft()将计算快速傅里叶变换:因为功率结果是对称的,仅仅需要使用谱的正值部分来找出频率:In [48]:...scipy.optimization子模块提供了函数最小值(标量或多维)、曲线拟合和寻找等式的根的有用算法。...另外:这些分布有些有用的方法。通过阅读它们的文档字符串或使用IPython的tab补全来探索它们。你能够通过对你的随机变量使用拟合找到形状参数1吗?----百分位中位数是来观测值之下一半之上一半的值。...二值图(黑白图),特别能被用该理论转换:要转换的集合是邻近的非零值像素。这个理论也被拓展到灰度图中。基本的数学形态操作使用一个结构元素(structuring element)来改变其它几何结构。

    5.5K23
    领券