首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

pandas每天一题-题目15:删除列的多种方式

需求:各种删除列的方式 下面是答案了 ---- 方式1 这是 python 删除变量的操作,同样适用于 DataFrame 删除列: 1del df['order_id'] 2df 也可以同时删除多列...axis=0,可以删除行 删除多列当然也是可以: 1df.drop(['order_id','quantity'],axis=1) 点评: 不会修改原数据,适合临时操作 ---- 方式3 在方式1中,...如果我们希望提出 order_id 列,然后从表格中移除,我们需要这么做: 1ids = df['order_id'] 2del df['order_id'] 3 4# …………后续对 ids 操作...pandas 为此提供了一个方法直接完成2个操作: 1ids = df.pop('order_id') pop 方法会提取指定列并返回,然后从 df 中移除这一列 这与方式1一样是会修改原数据 点评:...此方法没啥大作用,不推荐使用 ---- 推荐阅读: 懂Excel就能轻松入门Python数据分析包pandas(八):匹配查找 pandas输出的表格竟然可以动起来?

65820

Pandas_Study02

pandas 数据清洗 1. 去除 NaN 值 在Pandas的各类数据Series和DataFrame里字段值为NaN的为缺失数据,不代表0而是说没有赋值数据,类似于python中的None值。...# 要删除一列或一行中全部都是nan 值的那一行或列,可以通过下面的方式 print("del cols is all NaN\n", df.dropna(axis = 'columns', how...复杂的 使用向前 或 向后 填充数据,依旧使用fillna 方法,所谓向前 是指 取出现NaN值的前一列或前一行的数据来填充NaN值,向后同理 # 在df 的e 这一列上操作,默认下按行操作,向前填充数据...([df1, df2]) 当然,列标和行标不一定是对应的,这个时候两DataFrame未匹配上的label或columns下的值为NaN concat 函数 同样的可以指定是按行操作还是按列操作。...补充: 内连接,对两张有关联的表进行内连接操作,结果表会是两张表的交集,例如A表和B表,如果是A 内连接(inner join)B表,结果表是以A为基准,在B中找寻A匹配的行,不匹配则舍弃,B内连接A同理

20510
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    Pandas

    进行切片,对行的指定要使用索引或者条件,对列的索引必须使用列名称,如果有多列,则还需要借助[]将列名称括起来。...更改名称 pd中的一个df一般会有两个位置有名称,一个是轴的名称(axis_name),一个是行或列的名称,两个名称可以在创建df时进行声明,也可以调用方法进行修改: df.rename_axis(str...#inplace表示是否在原DataFrame上进行操作 #axis表示删除的行还是列,默认是0即删除行 Sorting and Ranking df.sort_index(axis=1,ascending...以加法为例,它会匹配索引相同(行和列)的进行算术运算,再将索引不匹配的数据视作缺失值,但是也会添加到最后的运算结果中,从而组成加法运算的结果。...()方法删除记录或特征(默认删除含有缺失值的行,可以修改 how 参数进行调节,也可以调节 thresh 参数控制删除指定数量缺失值的行,亦可通过调节subset=[col_name]参数来指定删除指定列存在缺失值的行

    9.2K30

    猫头虎 分享:Python库 Pandas 的简介、安装、用法详解入门教程

    按列选择 # 选择单列 print(df['Name']) # 选择多列 print(df[['Name', 'Age']]) 按条件过滤 # 选择年龄大于30的行 filtered_df = df...处理缺失值 # 填充缺失值 df.fillna(0, inplace=True) # 删除包含缺失值的行 df.dropna(inplace=True) 处理重复值 # 删除重复行 df.drop_duplicates...合并数据时的匹配问题 在合并多个 DataFrame 时,可能会遇到匹配错误的问题。...选择指定列或条件过滤数据 df[df['Age'] > 30] 处理缺失值 填充或删除缺失值 df.fillna(0, inplace=True) 处理重复值 删除重复行 df.drop_duplicates...(inplace=True) 数据合并 按指定列合并两个 DataFrame pd.merge(df1, df2, on='key') 本文总结与未来趋势 Pandas 是 Python 生态系统中无可替代的数据分析工具

    25310

    《Python for Excel》读书笔记连载11:使用pandas进行数据分析之组合数据

    在下面的示例中,创建了另一个数据框架more_users,并将其附加到示例数据框架df的底部: 注意,现在有了重复的索引元素,因为concat将数据粘在指定的轴(行)上,并且只对齐另一个轴(列)上的数据...,从而自动匹配列名,即使它们在两个数据框架中的顺序不同。...左联接(leftjoin)获取左数据框架df1中的所有行,并在索引上匹配右数据框架df2中的行,在df2没有匹配行的地方,pandas将填充NaN。左联接对应于Excel中的VLOOKUP情况。...右联接(rightjoin)获取右表df2中的所有行,并将它们与df1中索引相同的行相匹配。...merge接受on参数以提供一个或多个列作为联接条件(joincondition):这些列必须存在于两个数据框架中,用于匹配行: 由于join和merge接受相当多的可选参数以适应更复杂的场景,因此你可以查看官方文档以了解关于它们的更多信息

    2.5K20

    懂Excel轻松入门Python数据分析包pandas(十八):pandas 中的 vlookup

    后来才发现,原来不是 Python 数据处理厉害,而是他有数据分析神器—— pandas 前言 Excel 中名声最响的就是 vlookup 函数,当然在 Excel 函数公式中用于查找的函数家族也挺大...,不过在 pandas 中这功能却要简单多了。...今天就来看看 pandas 中任何实现 Excel 中的多列批量 vlookup 的效果 案例1:简单匹配 一天,你收到一份数据源表如下: - 每个人每个城市的销售额数据 接着,你需要把下图的表格从数据源表匹配过来...pandas 中怎么实现: - 行6、7,由于现在需要姓名匹配,我们把2份数据的姓名列设置为行索引 - 行9,简单调用 update 方法,表示 df_tg 按照 df_src 更新值 由于 pandas...他很智能,只会更新列名配对的那些列 案例4:多列匹配 上面的案例只是根据名字来匹配,如果需要根据多个列匹配呢?

    1.8K40

    AI批量将英文参考文献中的图书和杂志分开

    现在有一大堆英文参考文献,要将其中的图书和杂志分开,在deepseek中输入提示词: 你是一个Python编程专家,要完成一个Python脚本,完成任务如下: 读取文件:"D:\参考文献.xlsx"工作簿中的工作表...,那么把这个单元格内容移动到工作表“Sheet2”; 删除掉sheet1中包含字符串“vol.”或者“Vol.”的单元格内容; 注意:每一步都要输出信息到屏幕上 pandas库在较新的版本中已经弃用了append...此外,为了避免FutureWarning,我们可以使用iloc来访问DataFrame的行。 在写入Excel文件时,pandas默认不允许覆盖现有的工作表。...", "Vol."] # 创建一个空的DataFrame用于存储符合条件的行 filtered_df = pd.DataFrame(columns=df.columns) print("正在检测第一列中的字符串...else: print("已找到匹配的单元格内容,正在移动到Sheet2并从Sheet1中删除...") # 删除Sheet1中匹配的行 df = df.drop(indices_to_remove)

    4200

    我用Python展示Excel中常用的20个操

    数据删除 说明:删除指定行/列/单元格 Excel 在Excel删除数据十分简单,找到需要删除的数据右键删除即可,比如删除刚刚生成的最后一列 ?...Pandas 在pandas中删除数据也很简单,比如删除最后一列使用del df['new_col']即可 ?...数据合并 说明:将两列或多列数据合并成一列 Excel 在Excel中可以使用公式也可以使用Ctrl+E快捷键完成多列合并,以公式为例,合并示例数据中的地址+岗位列步骤如下 ?...Pandas 在Pandas中合并多列比较简单,类似于之前的数据插入操作,例如合并示例数据中的地址+岗位列使用df['合并列'] = df['地址'] + df['岗位'] ?...Pandas 在Pandas中对数据进行分组计算可以使用groupby轻松搞定,比如使用df.groupby("学历").mean()一行代码即可对示例数据的学历进行分组并求不同学历的平均薪资,结果与Excel

    5.6K10

    Pandas数据应用:金融数据分析

    Pandas作为Python中强大的数据分析库,因其易用性和灵活性而广泛应用于金融领域。本文将由浅入深地介绍如何使用Pandas进行金融数据分析,并探讨常见的问题及解决方案。...一、Pandas基础操作1. 导入数据在金融数据分析中,我们通常需要从CSV文件、Excel表格或数据库中导入数据。Pandas提供了多种方法来读取这些数据源。...处理缺失值:# 检查缺失值print(df.isnull().sum())# 删除含有缺失值的行df_cleaned = df.dropna()# 或者用均值填充缺失值df_filled = df.fillna...(df.mean())删除重复值:# 删除重复行df_unique = df.drop_duplicates()3....数据类型不匹配在处理金融数据时,经常遇到数据类型不匹配的问题,例如字符串类型的数值无法进行数学运算。可以通过astype方法强制转换数据类型。

    13110

    懂Excel轻松入门Python数据分析包pandas(十八):pandas 中的 vlookup

    后来才发现,原来不是 Python 数据处理厉害,而是他有数据分析神器—— pandas 前言 Excel 中名声最响的就是 vlookup 函数,当然在 Excel 函数公式中用于查找的函数家族也挺大...,不过在 pandas 中这功能却要简单多了。...今天就来看看 pandas 中任何实现 Excel 中的多列批量 vlookup 的效果 案例1:简单匹配 一天,你收到一份数据源表如下: - 每个人每个城市的销售额数据 接着,你需要把下图的表格从数据源表匹配过来...pandas 中怎么实现: - 行6、7,由于现在需要姓名匹配,我们把2份数据的姓名列设置为行索引 - 行9,简单调用 update 方法,表示 df_tg 按照 df_src 更新值 由于 pandas...他很智能,只会更新列名配对的那些列 案例4:多列匹配 上面的案例只是根据名字来匹配,如果需要根据多个列匹配呢?

    3K20

    盘点一个Pandas处理Excel表格实战问题(上篇)

    一、前言 前几天在Python最强王者交流群【哎呦喂 是豆子~】问了一个Pandas实战的问题,一起来看看吧。问题描述: 大佬们~ 请问下这个数据怎么实现呢?...有2组数据:第一个数据《获取的数据.xlsx》:每13行数据为一组,要实现一列数据拆分成多列数据(这边简称表1),见截图 第二个数据《时间.xlsx》:每1行数据为一组,要实现把该行数据的时间插入到表1...剩下的就是两个excel匹配的问题了。...(df['data'].values.reshape(-1, 13)) # 删除df_new中重复的行,仅保留第一个 df_new.drop_duplicates(keep='first', inplace...=True) # 把df_new的第0行设置为df_new的列名 df_new.columns = df_new.iloc[0] # 删除第0行 df_new.drop(index=0, inplace

    14210

    通宵翻译Pandas官方文档,写了这份Excel万字肝货操作!

    列操作 在电子表格中,公式通常在单个单元格中创建,然后拖入其他单元格以计算其他列的公式。在 Pandas 中,您可以直接对整列进行操作。...pandas 通过在 DataFrame 中指定单个系列来提供矢量化操作。可以以相同的方式分配新列。DataFrame.drop() 方法从 DataFrame 中删除一列。...列的选择 在Excel电子表格中,您可以通过以下方式选择所需的列: 隐藏列; 删除列; 引用从一个工作表到另一个工作表的范围; 由于Excel电子表格列通常在标题行中命名,因此重命名列只需更改第一个单元格中的文本即可...outer") 结果如下: 与 VLOOKUP 相比,merge 有许多优点: 查找值不需要是查找表的第一列; 如果匹配多行,则每个匹配都会有一行,而不仅仅是第一行; 它将包括查找表中的所有列,而不仅仅是单个指定的列...查找和替换 Excel 查找对话框将您带到匹配的单元格。在 Pandas 中,这个操作一般是通过条件表达式一次对整个列或 DataFrame 完成。

    19.6K20

    合并多个Excel文件,Python相当轻松

    标签:Python与Excel,pandas 下面是一个应用场景: 我在保险行业工作,每天处理大量数据。有一次,我受命将多个Excel文件合并到一个“主电子表格”中。...(即等待电子表格重新计算) 使用Python 像往常一样,先导入pandas库,然后将所有三个Excel文件读入Python。...注意,在第一个Excel文件中,“保险ID”列包含保险编号,而在第二个Excel文件中,“ID”列包含保险编号,因此我们必须指定,对于左侧数据框架(df_1),希望使用“保险ID”列作为唯一键;而对于右侧的数据框架...df_1和df_2中的记录数相同,因此我们可以进行一对一的匹配,并将两个数据框架合并在一起。...图6:合并数据框架,共21行和8列 第二次合并 我们获取第一次合并操作的结果,然后与另一个df_3合并。

    3.8K20

    Pandas知识点-合并操作merge

    合并时,先找到两个DataFrame中的连接列key,然后将第一个DataFrame中key列的每个值依次与第二个DataFrame中的key列进行匹配,匹配到一次结果中就会有一行数据。...on参数指定的列必须在两个被合并DataFrame中都有,否则会报错。 on参数也可以指定多列,合并时按多个列进行连接。 ? 在合并时,只有多个列的值同时相等,两个DataFrame才会匹配上。...上面的例子中,用于连接的列是key1,key2,k0,k0在两个DataFrame中都有,匹配到一次,k1,k1匹配到两次,k2,k2和k2,k3等都没有匹配成功,所以结果为三行(默认合并方式为inner...many_to_many: 两个DataFrame连接列中的值都可以不唯一。 ? 使用多对多的对应方式,任何情况都满足,合并不会报错。...如果需要本文代码,可以点击关注公众号“Python碎片”,然后在后台回复“pandas13”关键字获取完整代码。

    4.3K30

    2020年入门数据分析选择Python还是SQL?七个常用操作对比!

    tips WHERE tip > 9; 在pandas中,我们选择应保留的行,而不是删除它们 tips = tips.loc[tips['tip'] <= 9] 五、分组 在pandas中,使用groupby...在pandas中的等价操作为 ? 注意,在上面代码中,我们使用size()而不是count() 这是因为count()将函数应用于每一列,并返回每一列中非空记录的数量!...'value': np.random.randn(4)}) 内连接 内联接使用比较运算符根据每个表共有的列的值匹配两个表中的行,在SQL中实现内连接使用INNER JOIN SELECT * FROM...全连接 全连接返回左表和右表中的所有行,无论是否匹配,但并不是所有的数据库都支持,比如mysql就不支持,在SQL中实现全连接可以使用FULL OUTER JOIN SELECT * FROM df1...七、合并 SQL中UNION操作用于合并两个或多个SELECT语句的结果集,UNION与UNION ALL类似,但是UNION将删除重复的行。

    3.6K31

    从Excel到Python:最常用的36个Pandas函数

    在开始使用Python进行数据导入前需要先导入numpy和pandas库 import numpy as np import pandas as pd 导入外部数据 df=pd.DataFrame(pd.read_csv...#删除数据表中含有空值的行 df.dropna(how='any') ?...2.清理空格 字符中的空格也是数据清洗中一个常见的问题 #清除city字段中的字符空格 df['city']=df['city'].map(str.strip) 3.大小写转换 在英文字段中,字母的大小写不统一也是一个常见的问题...在Python中使用split函数实现分列在数据表中category列中的数据包含有两个信息,前面的数字为类别id,后面的字母为size值。中间以连字符进行连接。...Python中通过pivot_table函数实现同样的效果 #设定city为行字段,size为列字段,price为值字段。 分别计算price的数量和金额并且按行与列进行汇总。

    11.5K31

    python数据科学系列:pandas入门详细教程

    或字典(用于重命名行标签和列标签) reindex,接收一个新的序列与已有标签列匹配,当原标签列中不存在相应信息时,填充NAN或者可选的填充值 set_index/reset_index,互为逆操作,...检测各行是否重复,返回一个行索引的bool结果,可通过keep参数设置保留第一行/最后一行/无保留,例如keep=first意味着在存在重复的多行时,首行被认为是合法的而可以保留 删除重复值,drop_duplicates...,可通过axis参数设置是按行删除还是按列删除 替换,replace,非常强大的功能,对series或dataframe中每个元素执行按条件替换操作,还可开启正则表达式功能 2 数值计算 由于pandas...如下实现对数据表中逐元素求平方 ? 广播机制,即当维度或形状不匹配时,会按一定条件广播后计算。...,要求每个df内部列名是唯一的,但两个df间可以重复,毕竟有相同列才有拼接的实际意义) merge,完全类似于SQL中的join语法,仅支持横向拼接,通过设置连接字段,实现对同一记录的不同列信息连接,支持

    15K20

    Pandas部分应掌握的重要知识点

    5的行; ② loc索引器的切片却包含终值,所以team.loc[3:4,[0,2]]中却包含行标签为4的行; ③ 同样是整数,在iloc索引器中将被解读为行/列下标,而在loc索引器中将被解读为行...df.loc[2,:]=["Rose","Sales","Female",3500] print("修改标签为2的行之后:") df 5、删除一列或多列数据 使用drop函数,并且指定axis=1才能删除列...#注意Tom目前没有所属部门 1、merge合并 merge主要基于列值匹配而进行列合并,类似于SQL中的连接操作。...,本例中lambda函数的形参x代表每个分组 ④ 当组对象存在多列时,filter的过滤条件要求显式的指定某一列 六、处理缺失值 1、Pandas中缺失值的表示 Pandas表示缺失值的一种方法是使用...NaN(Not a Number),它是一个特殊的浮点数;另一种是使用Python中的None;Pandas会自动把None转变成NaN。

    4700

    Pandas实现简单筛选数据功能

    一、简述 python的pandas库可以轻松的处理excel中比较难实现的筛选功能,以下简单的介绍几种利用pandas实现筛选功能方式: 二、模块介绍 pandas——专为解决数据分析与处理任务而创建的...数据; 指定文件路径,由于文件在 Python 脚本同目录,直接输入文件名即可 sheet_name 指定读取哪个工作表、也可以写为sheet_name=0 三、样例 3.1 简单查询 筛选出数据的指定几行数据...自定义函数变量data data=df.loc[2:5] #这里的[2:5]表示第3行到第5行内容,[]第一个起始是0,表示数据的第一行 筛选出数据某列为某值的所有数据记录 df['列名'] =...'值' 多条件匹配时 自定义函数data_many data_many=df[(df['列名1']== ‘列值1’)&(df['列名2']==‘列值2’)] 多值匹配时 data_many="...是不是很像SQL的语句:select * from id where name in (‘值1’,‘值2’,‘值3’) 3.2 模式匹配 某列中开头是某值,中间包含某值的模式匹配法,可能在Excel中实现比较困难

    1.5K10
    领券