前言 在数据分析时,原始数据往往不能满足我们的需求,经常需要按照一定条件创建新的数据列或者修改原有数据列,然后进行后续分析。...本次我们将介绍四种新增数据列的方法:直接赋值、df.apply方法、df.assign方法以及按条件筛选后赋值。 本文框架 0. 导入Pandas 1. 读取数据与数据预处理 2....导入Pandas import pandas as pd 1. 读取数据与数据预处理 # 读取数据 data = pd.read_csv("....# 计算温差 data["Temperature_difference"] = data["bWendu"] - data["yWendu"] # 查看添加新列后的数据 data.head() # 返回结果...在此我们为数据添加"Temperature_type"列,设置最高温度大于30为热,最低气温低于-10为冷,其余为正常。
Pandas是一个用于数据操作和分析的Python库。它建立在 numpy 库之上,提供数据帧的有效实现。数据帧是一种二维数据结构。在数据帧中,数据以表格形式在行和列中对齐。...最常用的熊猫对象是数据帧。大多数情况下,数据是从其他数据源(如csv,excel,SQL等)导入到pandas数据帧中的。...在本教程中,我们将学习如何创建一个空数据帧,以及如何在 Pandas 中向其追加行和列。...Python 中的 Pandas 库创建一个空数据帧以及如何向其追加行和列。...我们还了解了一些 Pandas 方法、它们的语法以及它们接受的参数。这种学习对于那些开始使用 Python 中的 Pandas 库对数据帧进行操作的人来说非常有帮助。
标签:Python与Excel,pandas 删除列也是Excel中的常用操作之一,可以通过功能区或者快捷菜单中的命令或者快捷键来实现。...上一篇文章,我们讲解了Python pandas删除数据框架中行的一些方法,删除列与之类似。然而,这里想介绍一些新方法。取决于实际情况,正确地使用一种方法可能比另一种更好。...准备数据框架 创建用于演示删除列的数据框架,仍然使用前面给出的“用户.xlsx”中的数据。 图1 .drop()方法 与删除行类似,我们也可以使用.drop()删除列。...删除多列:传入要删除的列的名称列表。 如果要覆盖原始数据框架,则要包含参数inplace=True。 图2 del方法 del是Python中的一个关键字,可用于删除对象。...重赋值 当数据框架只有几列时效果最好;或者数据框架有很多列,但我们只保留一些列。 如果我们需要保留许多列,必须键入计划保留的所有列名称,这可能需要大量键入。
问题描述: 创建一个包含10行6列随机数的DataFrame,行标签从大写字母A开始,列标签从小写字母u开始。...然后从上向下遍历,如果某行u列的值比上一行u列的值大,就把该行x列的值改为上一行x列的值加1,否则保持原来的值不变。 参考代码: 运行结果:
进行数据分析的灵活操作,但同时作为一个功能强大的全能工具库,它也能非常方便地支持数据可视化,而且大部分基础图像绘制只要一行代码就能实现,大大加速了我们的分析效率,本文我们介绍pandas可视化及绘制各种图形的方法...'a', 'b', 'c', 'd']) df.plot.hist(bins=20) 运行结果如下: [2a1dc700f3bf37c1002e7208065bb685.png] 可以使用以下代码为每列绘制不同的直方图...57fb620e9340c39ea0b3cad39be99ba6.png] 四、箱形图 可以通过调用 Series.box.plot() 和 DataFrame.box.plot() 或 DataFrame.boxplot() 来绘制Boxplot,以可视化每个列中值的分布...subplots=True) 运行结果如下: [8913a984ab974a89d84c3ffbd1878c52.png] 资料与代码下载 本教程系列的代码可以在ShowMeAI对应的github中下载,可本地python...系列教程推荐 图解Python编程:从入门到精通系列教程 图解数据分析:从入门到精通系列教程 图解AI数学基础:从入门到精通系列教程 图解大数据技术:从入门到精通系列教程
本文主要目的是通过列属性进行列挑选,比如在同一个数据框中,有的列是整数类的,有的列是字符串列的,有的列是数字类的,有的列是布尔类型的。...假如我们需要挑选或者删除属性为整数类的列,就可能需要用到pandas.DataFrame.select_dtypes函数功能 该函数的主要格式是:DataFrame.select_dtypes(include...,请使用np.datetime64,'datetime'或'datetime64' 要选取所有属性为‘类’的列,请使用“category” 实例 新建数据集 import pandas as pd import...2 False 2.0 white median 4 1 True 1.0 asian high 5 2 False 2.0 white high 我们构建了一个数据框...a列为‘integer’数字类型, b列为‘bool’布尔类型, c列为‘数字’类型, d列为‘category’分类类型, e列为‘object’字符串类型 挑选数据框子集 df.select_dtypes
python如何用循环遍历分离数据 分离说明 1、创建三个列表,分别用于存储。 2、筛选出的重复数据。用来存储重复数据以外的剩余数据。...用来存储要比较的所有数据的索引(即name),其中去除为空的name。... 用于储存重复数据之外剩余的数据 n_l = [] # 用于储存要对比的所有数据的索引(即name),其中剔除为空的name values = [] # 获取所有数据中name值不为空数据的name...as f3: n_cw = csv.writer(f3) for n_item in n_l: n_cw.writerow(n_item.split(',')) 以上就是python...用循环遍历分离数据,希望对大家有所帮助。
> 经常听别人说 Python 在数据领域有多厉害,结果学了很长时间,连数据处理都麻烦得要死。...后来才发现,原来不是 Python 数据处理厉害,而是他有数据分析神器—— pandas 前言 Excel 是奇葩不规范数据的重灾区,这主要是因为他有高度的灵活性,今天来看看一个多列堆叠问题。...现在来看看,在 pandas 中怎么简单转换成规范的2列数据: - 第一句主要是为了最后结果的标题与原数据标题一致而已 - 关键是第二句,这里直接使用 numpy 的 reshape 方法,即可完成需求...- .reshape(-1,2) ,其中的2就是2列,而 -1 是让 numpy 你根据数据来计算最终的行数 - 第三句,只是把结果的数组变为一个 DataFrame - 至于最后的 dropna ,...用 pandas 不就是为了既可自动化处理,又可以少写点代码吗 总结 - numpy 的 reshape 方法,可以快速把数组转换成指定行数或列数 - 用 -1 可以让 numpy 自动计算行或列的数量
Python Pandas数据框如何选择行 说明 1、布尔索引( df[df['col'] == value] ) 2、位置索引( df.iloc[...]) 3、标签索引( df.xs(...))...假设我们的标准是 column 'A'=='foo' (关于性能的注意事项:对于每个基本类型,我们可以通过使用 Pandas API 来保持简单,或者我们可以在 API 之外冒险,通常进入 NumPy,...借用@unutbu: import pandas as pd, numpy as np df = pd.DataFrame({'A': 'foo bar foo bar foo bar foo foo'...three two two one three'.split(), 'C': np.arange(8), 'D': np.arange(8) * 2}) 以上就是Python...Pandas数据框选择行的方法,希望对大家有所帮助。
Python按照某些列去重,可用drop_duplicates函数轻松处理。本文致力用简洁的语言介绍该函数。...# coding: utf-8 import os #导入设置路径的库 import pandas as pd #导入数据处理的库 import numpy as np #...导入数据处理的库 os.chdir('F:/微信公众号/Python/26.基于多列组合删除数据框中的重复值') #把路径改为数据存放的路径 name = pd.read_csv('name.csv...从上文可以发现,在Python中用drop_duplicates函数可以轻松地对数据框进行去重。 但是对于两列中元素顺序相反的数据框去重,drop_duplicates函数无能为力。...如需处理这种类型的数据去重问题,参见本公众号中的文章【Python】基于多列组合删除数据框中的重复值。 -end-
Python中pandas dataframe删除一行或一列:drop函数 DataFrame.drop(labels=None,axis=0, index=None, columns=None,...inplace=False) 在这里默认:axis=0,指删除index,因此删除columns时要指定axis=1; inplace=False,默认该删除操作不改变原数据,而是返回一个执行删除操作后的新...dataframe;inplace=True,则会直接在原数据上进行删除操作,删除后就回不来了。
本文,我借鉴 Richard 的分析思路,换成用 Python 和数据分析包 Pandas 对该数据集进行分析和可视化。希望通过这个例子,让你了解开放数据的获取、整理、分析和可视化。...import pandas as pd 用 Pandas 的 csv 数据格式读取功能,把数据读入,并且存入到 df 变量里面。...我们来看看 robbery 数据框的大小。 robbery.shape (660, 6) 一共是660条记录,每条记录有6列。...小结 通过本文的学习,希望你已掌握了以下内容: 如何检索、浏览和获取开放数据; 如何用 Python 和 Pandas 做数据分类统计; 如何在 Pandas 中做数据变换,以及缺失值补充; 如何用 Pandas...祝 Python 编程愉快(和出入平安)!
参考链接: 用Pandas建立索引并选择数据 作者 | 周志鹏 责编 | 刘静 据不靠谱的数据来源统计,学习了Pandas的同学,有超过60%仍然投向了Excel的怀抱,之所以做此下策,多半是因为刚开始用...Python处理数据时,选择想要的行和列实在太痛苦,完全没有Excel想要哪里点哪里的快感。 ...第二种是基于名称(标签)的索引,这是要敲黑板练的重点,因为它将是我们后面进行数据清洗和分析的重要基石。 ...这两种索引方式,分别是基于位置(数字)的索引和基于名称(标签)的索引,关键在于把脑海中想要选取的行和列,映射到对应的行参数与列参数中去。 ...只要稍加练习,我们就能够随心所欲的用pandas处理和分析数据,迈过了这一步之后,你会发现和Excel相比,Python是如此的美艳动人。
原生Python代码确实比编译后的代码要慢。不过,像Pandas这样的库提供了一个用于编译代码的python接口,并且知道如何正确使用这个接口。...03 通过DTYPES高效地存储数据 当通过read_csv、read_excel或其他数据帧读取函数将数据帧加载到内存中时,pandas会进行类型推断,这可能是低效的。...这些api允许您明确地利用dtypes指定每个列的类型。指定dtypes允许在内存中更有效地存储数据。...pandas默认为64位整数,我们可以节省一半的空间使用32位: ? 04 处理带有块的大型数据集 pandas允许按块(chunk)加载数据帧中的数据。...因此,可以将数据帧作为迭代器处理,并且能够处理大于可用内存的数据帧。 ?
在准备关系数据时需要根据两列组合删除数据框中的重复值,两列中元素的顺序可能是相反的。 我们知道Python按照某些列去重,可用drop_duplicates函数轻松处理。...二、基于两列删除数据框中的重复值 1 加载数据 # coding: utf-8 import os #导入设置路径的库 import pandas as pd #导入数据处理的库...import numpy as np #导入数据处理的库 os.chdir('F:/微信公众号/Python/26.基于多列组合删除数据框中的重复值') #把路径改为数据存放的路径 df =...如需数据实现本文代码,请到公众号中回复:“基于多列删重”,可免费获取。 得到结果: ?...numpy as np #导入数据处理的库 os.chdir('F:/微信公众号/Python/26.基于多列组合删除数据框中的重复值') #把路径改为数据存放的路径 name = pd.read_csv
封面图片:《Python程序设计(第2版)》,董付国,清华大学出版社 =============== 问题描述: 已知文件“超市营业额2.xlsx”中结构与部分数据如图所示: ?...现在要求把每个员工的交易数据写入文件“各员工数据.xlsx”,每个员工的数据占一个worksheet,结构和“超市营业额2.xlsx”一样,并以员工姓名作为worksheet的标题,预期的结果文件如图所示...很显然,要解决这个问题需要这样几步:1)读取原始数据文件创建DataFrame,2)分离DataFrame,把不同员工的数据分离开,3)把不同员工的数据写入同一个Excel文件的不同Worksheet。...第1步比较简单,使用pandas的read_excel()函数读取Excel文件即可。 对于第2步,需要首先获取所有员工的唯一姓名,然后使用DataFrame结构的布尔运算也很容易分离。...对于第3步,需要使用DataFrame结构的to_excel()方法来实现,把第2步中分离得到的每位员工的数据写入同一个Excel文件的不同Worksheet中,该方法语法为: to_excel(excel_writer
有一个带有三列数据框的CSV格式文件。 第三栏文字较长。...但是用打开文件没有问题 with open(‘file.csv’, ‘r’, encoding=’utf-8′, errors = “ignore”) as csvfile: 我不知道如何将这些数据转换为数据帧...那么,如何打开该文件并获取数据框? 参考方案 试试这个: 在文本编辑器中打开cvs文件,并确保将其保存为utf-8格式。...然后照常读取文件: import pandas csvfile = pandas.read_csv(‘file.csv’, encoding=’utf-8′) 如何使用Pandas groupby在组上添加顺序计数器列...这个程序包有python端口吗?如果不存在,是否可以通过python使用该包? python参考方案 最近,我遇到了pingouin库。如何用’-‘解析字符串到节点js本地脚本?
本文介绍基于Python语言,读取Excel表格数据,并基于给定的行数范围内的指定列数据,绘制多条曲线图,并动态调整图片长度的方法。 首先,我们来明确一下本文的需求。...现有一个.csv格式的Excel表格文件,其第一列为表示时间的数据,而靠后的几列,也就是下图中紫色区域内的列,则是表示对应日期的属性的数据;如下图所示。 ...我们现在希望,对于给定的行数起始值与结束值(已知这个起始值与结束值对应的第一列数据,肯定是一个完整的时间循环),基于表格中后面带有数据的几列(也就是上图中紫色区域内的数据),绘制曲线图;并且由于这几列数据所表示的含义不同...,希望用不同颜色、不同线型来表示每一列的数据。...os用于处理文件路径,pandas用于读取和处理表格文件数据,matplotlib.pyplot用于绘制图表。 接下来,我们定义文件路径和索引范围。