转载自美国能源部Home (lbl.gov) 感谢原作者的付出。 本文展望了在后摩尔时代的一些新兴技术方案。
工作任务:下面表格中的,、分开的内容进行批量分列 在chatgpt中输入提示词: 你是一个Python编程专家,完成一个脚本编写任务,具体步骤如下: 读取Excel文件:""F:\AI自媒体内容\AI行业数据分析...”; 单元格分拆完成后,把所有分拆出去的单元格内容追加到A列当前内容的后面; 然后对A列数据进行分类汇总,汇总方式为计数,分类汇总结果保存到Excel文件:F:\AI自媒体内容\AI行业数据分析\AI行业数据来源....xlsx 注意: 每一步都要输出信息 处理异常和错误:确保你的代码能够处理可能遇到的异常,如文件损坏、权限问题等。...DataFrame 用于存储拆分后的内容 split_df = pd.DataFrame(split_data) # 将拆分后的内容合并回第一列 http://logging.info("合并拆分后的内容到第一列...http://logging.info("将拆分后的内容追加到第一列当前内容的后面") df_expanded = pd.DataFrame() df_expanded[first_column_name
比如基因列为ID的需要转为常见的symbol,基因列为symbol|ID的就需要拆开了! excel分列可以解决,但是表达量数据较大,且excel容易产生“数据变形”。...第一列的ID,和人为添加的ID2,名称不规则,我们只需要前面的基因名。...二 合久可分-一列拆多列 使用separate函数, 将“指定”分隔符出现的位置一列分成多列 2.1 默认,不指定分隔符 data %>% separate(ID, into = c("Gene",...", "bar"),sep = 16) %>% #按照规则取前16个字符 select(-bar) #去掉分割后不需要的bar列 ?...可参考:盘一盘Tidyverse| 筛行选列之select,玩转列操作 Tips: 1)数据分列可以先默认试一下,如2.1所示 2)使用R的帮助,一定!
target_date # www.lanol.cn if __name__ == '__main__': print(f"指定结果:{main('2022-2-21', 2)}") @松涛哥 提供的问题
看图: 逆透视是多列(列名)都逐个放到行里变明细数据哦,而上面想要的结果列和原始数据的列是一毛一样的,只是要把列里面的内容拆分、配对展开…… 数据简化模拟如下:...所以,首先第一步,不管怎么着,先把列给拆分了,但是,这里不好用拆分列的功能来做,为什么?...1、不能拆分到行:因为要分别对两列的内容进行拆分且找配对关系,先拆任何一列都会使配对关系丢失; 2、不能拆分到列:因为要拆分的内容的项数是不固定的。...Step 02:添加自定义列,把两列拆分出来的内容直接拉到一起 内容配对好后,就可以层层展开了…… - 3 - 内容展开 Step 03:第一次展开,扩展到新行(因为不同的配对内容是要拆到多个行的...) Step 04:第二次展开,提取值(因为配对好的内容本身是要在同一行里的,分隔符按需要选择即可,后面拆分列时用,这里选择空格) Step 05:提取出来后,再按前面选择的分隔符简单分列即可
如果非必要,其实更建议直接用度量,而不是计算列。这种计算的结果,通常每行的结果数都不一样(即所谓的大基列),这样PP的引擎(Vertipaq)对这个列基本没有压缩,存储和内存开销会很大。...- 2 - 关于计算列和度量怎么选?...定义严格绑定到当前行的表达式。(例如,计算“价格* 数量”时不能对两列求和或求平均后再相乘) 对文本或数值做分类时。...存在年份和地区筛选器的情况下,计算一个产品占所有产品的比率。 你可以使用计算列和度量值来表示同一计算,即使在这种情况下需要使用不同的 DAX 表达式。...而对于数据量很大的情况,则需要根据具体情况进行专门的处理,可能有些可参考的基本原则和特定情境下的案例,比如: 尽可能在数据源头规范数据,避免大量的数据清洗过程; 尽可能避免内存的占用,如尽可能用度量,而不是计算列
Python 用散列表来实现 dict。 散列表其实是一个稀疏数组(总是有空白元素的数组称为稀疏数组)。在一般书中,散列表里的单元通常叫做表元(bucket)。...Python会设法保证大概还有三分之一的表元是空的,当快要达到这个阀值的时候,会进行扩容,将原散列表复制到一个更大的散列表里。 如果要把一个对象放入到散列表里,就先要计算这个元素键的散列值。...下面主要来说明一下散列表的算法: 为了获取键 search_key 所对应的值 search_value,python 会首先调用 hash(search_key) 计算 search_key 的散列值...,但如果 key1 和 key2 散列冲突,则这两个键在字典里的顺序是不一样的。...无论何时,往 dict 里添加新的键,python 解析器都可能做出为字典扩容的决定。扩容导致的结果就是要新建一个更大的散列表,并把字典里已有的元素添加到新的散列表里。
在做数据分列的时候,如果碰到分隔符连续出现的情况,比如用空格分列的时候,有的地方连续几个空格,那到底是分成几个,还是只当做一个来处理?...实际上就是,分列的时候怎么知道要分几列? 其实我不知道,而是事先通过其他操作步骤得到的。...此时,我们再回到操作的起点,按照方法的起始步骤进行操作和修改步骤公式: 然后,再把原来为了得到最大列数的步骤删掉即可: 有的朋友可能会说,这个步骤这么多,好麻烦啊。...- 2 - 拆行后筛选再分组加索引透视 Step-01 重复列 Step-02 按空格分列到行 Step-03 筛选去掉空内容 Step-04 分组加索引 修改步骤公式如下: 展开得到添加好索引的结果。...Step-05 用索引列以不要聚合的方式透视拆分出来的内容列 通过这种方式处理得到的结果,可以随着要拆分内容的变化而动态适应的结果。
开发者不赞同和鼓励或以其它方式支持非授权的电脑入侵和网络破坏。...RSPET (Reverse Shell and Post Exploitation Tool) 是一个基于Python的反连shell,并且具备后渗透阶段的一些功能。...注意:在V0.0.3版本中添加了一个min文件夹,因为这个新版本包含了其它不影响主功能(反连shell)的其它功能,min不会引入v0.0.3之后版本的任何更多功能,只接受与bug和性能相关的补丁。...【2】 管理多个或全部主机,控制多个连接的主机传输文件和UDP洪泛攻击。...控制端: python RSPET_client.py server_ip 可以根据个人需要进行调整 Linux发行版 包含RSPET的Linux发行版列表 BlackArch Linux (2016.04.28
今天我们将学习如何计算图像的色彩,然后,我们将使用OpenCV和Python实现色彩度量。 在实现了色彩度量之后,我们将根据颜色对给定的数据集进行排序,并使用我们上周创建的图像蒙太奇工具显示结果。...在第一个方程中,rg是红色通道和绿色通道的差值。在第二个方程中,yb是代表红色和绿色通道和的一半减去蓝色通道。 接下来,在计算最终的色彩度量C之前,计算标准偏差和平均值。 ?...我们将发现,这是计算图像色彩的一种非常有效和实用的方法。 接下来,我们将使用Python和OpenCV代码实现这个算法。...在OpenCV中实现图像色彩度量 现在我们对色彩度度量有了基本的了解,让我们使用OpenCV和NumPy来计算它。 在本节中,我们将: 导入必要的Python包。 解析命令行参数。...这里我们指出,蒙太奇中的所有图像将被调整为128 x 128,图像将有5列5行。 现在我们已经组装好了蒙太奇,我们将在屏幕上显示每个蒙太奇。
后来才发现,原来不是 Python 数据处理厉害,而是他有数据分析神器—— pandas 前言 今天从两个需求来看看数据分列功能,由于 Excel 自带功能比较弱,在处理稍微复杂的需求时会显得力不从心...本文结构: - 先看看简单的分列 - 接着尝试分割扩展成行 - 最后是多列分割扩展成行 Excel 分列 Excel 中对数据进行分列是非常简单的。...pandas 分列 pandas 对文本列进行分列,非常简单: - DataFrame.str.split() ,对文本列分列,第一参数指定分隔符 - 此外,参数 expand ,表示是否扩展成列...,若设置为 True ,则分割后的每个元素都成为单独一列。...如下: - 同时把科目和成绩分割扩展到行 直接看 pandas 怎么解决: - 先对 科目 与 成绩 列分别进行 split 后,再进行 explode - 然后通过 concat,与原来的 性名
后来才发现,原来不是 Python 数据处理厉害,而是他有数据分析神器—— pandas 前言 本系列有一篇文章是关于 pandas 实现 Excel 中的分列功能,后来有小伙伴问我,怎么实现 Excel...中固定列宽分列功能。...案例1 某公司系统,有一 id 列,其中一部分是表示用户出生日期: - 怎么可以从中把日期值提取出来呢 Excel 上可以用分列功能: - 结果会把数据分成3列 pandas 中,我们不需要用...因此我们可以这样处理: - 用负数表示从反方向计算截取范围 案例3 这是一个"抬杠案例": - 开始位置不固定,并且,日期之间还有不固定的分隔符号 我们当然可以用正则表达式提取,这次我选用一种特别的方式完成...总结 - 分列只是提取内容的一种方式,别一遇到分列,则只考虑 str.split - str.slice 或 str[] ,可以像 Python 切片一样做处理 - 用好 itertools.compress
正文 本篇描述了如何计算R中的数据框并将其添加到数据框中。一般使用dplyr R包中以下R函数: Mutate():计算新变量并将其添加到数据表中。 它保留了现有的变量。...Transmutate():计算新列但删除现有变量。...同时还有mutate()和transmutate()的三个变体来一次修改多个列: Mutate_all()/ transmutate_all():将函数应用于数据框中的每个列。...Mutate_at()/ transmutate_at():将函数应用于使用字符向量选择的特定列 Mutate_if()/ transmutate_if():将函数应用于使用返回TRUE的谓词函数选择的列...函数mutate_all()/ transmutate_all(),mutate_at()/ transmutate_at()和mutate_if()/ transmutate_if()可用于一次修改多个列
1.数据维度(行列) Excel中可以通过CTRL+向下的光标键,和CTRL+向右的光标键 来查看行号和列号。Python中使用shape函数来查看数据表的维度,也就是行数和列数。...在Python中使用split函数实现分列在数据表中category列中的数据包含有两个信息,前面的数字为类别id,后面的字母为size值。中间以连字符进行连接。...在前面的代码后增加price字段和sum函数。对筛选后的price字段 进行求和,相当于Excel中的sumifs函数的功能。...#对city字段进行汇总并计算price的合计和均值。...Python中通过pivot_table函数实现同样的效果 #设定city为行字段,size为列字段,price为值字段。 分别计算price的数量和金额并且按行与列进行汇总。
前言 Excel与Python都是数据分析中常用的工具,本文将使用动态图(Excel)+代码(Python)的方式来演示这两种工具是如何实现数据的读取、生成、计算、修改、统计、抽样、查找、可视化、存储等数据处理中的常用操作...],inplace=True),可以发现和Excel处理的结果一致,保留了 629 个唯一值。...数据拆分 说明:将一列按照规则拆分为多列 Excel 在Excel中可以通过点击数据—>分列并按照提示的选项设置相关参数完成分列,但是由于该列含有[]等特殊字符,所以需要先使用查找替换去掉 ?...Pandas 在Pandas中可以使用.split来完成分列,但是在分列完毕后需要使用merge来将分列完的数据添加至原DataFrame,对于分列完的数据含有[]字符,我们可以使用正则或者字符串lstrip...,用Excel制作更加方便,而有些操作比如数据的分组、计算等,因Pandas可以与NumPy等其他优秀的Python库结合而显得更加强大,所以我们在处理数据时也需要正确选择使用的工具!
一个读者的问题: 我需要用OpenCV计算视频文件中帧的总数。我发现的唯一的方法是对视频文件中的每一帧逐个循环,并增加一个计数器。有更快的方法吗?...在使用OpenCV和Python处理视频文件时,有两种方法来确定帧的总数: 方法1:使用OpenCV提供的内置属性访问视频文件元信息并返回帧总数的快速、高效的方法。...计算帧数的简单方法 在OpenCV中计算视频帧数的第一种方法非常快——它只是使用OpenCV提供的内置属性来访问视频文件并读取视频的元信息。...3行上导入必要的Python包。...如果出现异常,我们只需还原为手工计算帧数(第16和17行)。 最后,我们释放视频文件指针(19行)并返回视频的总帧数(21行)。
1、问题背景目前,我正在进行我的最终年项目,计划用 Python 编写一个云计算系统,而云客户端将由我的团队成员使用 Java 来编写。...例如,媒体标签将只选择和显示用户可读的 “dump” 中的媒体文件。文本编辑器标签将只显示用户可读的 “dump” 中的 txt 文件。打开文件的请求将被发送回客户端,相关的应用程序将打开该文件。...对文件所做的所有更改和所有操作(覆盖、保存、删除等)以及新对象将被连同新对象一起发送回服务器。对新创建的对象也会进行类似的操作。我的问题是:客户端和服务器之间通信的最佳方法是什么?...也许 GET 和 POST 可以解决第一个问题?还有其他建议吗?...2、解决方案2.1、客户端与服务器之间的数据传输对于客户端与服务器之间的数据传输,可以使用 HTTPS 来支持加密,并使用 JSON 来序列化 Python 和 Java 语言之间的对象。
前言 如何使用Python进行科学计算和数据分析,这里我们就要用到Python的科学计算库,今天来分享一下如何安装Python的数据科学计算库。...数据科学计算库 Python中的数据科学计算库有Numpy、Scipy、pandas、matplotlib(前面我分享了一篇matplotlib的简单应用,历史文章里面就有)。...Numpy是一个基础性的Python库,为我们提供了常用的数值数组和函数。 Scipy是Python的科学计算库,对Numpy的功能进行了扩充,同时也有部分功能是重合的。...pandas是一个流行的开源Python项目,它的名称取panel data(面板数据,一个计量经济学的术语)和Python data analysis(Python数据分析)的意思。...上面的结果看到,numpy的计算效率比普通的方法要快不少,所以开始学习吧。后面分享更多,欢迎关注。 小结 今天学习一下Python中的几个科学计算库的安装以及使用numpy进行简单的求和计算。
领取专属 10元无门槛券
手把手带您无忧上云