首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

Python:如何在pandas列中只保留特定的值?

在pandas中,可以使用条件筛选的方式来只保留特定的值。以下是一种常见的方法:

  1. 使用布尔索引:通过创建一个布尔条件,将满足条件的行筛选出来,然后重新赋值给原始的DataFrame。
代码语言:python
代码运行次数:0
复制
import pandas as pd

# 创建一个示例DataFrame
df = pd.DataFrame({'A': [1, 2, 3, 4, 5],
                   'B': ['a', 'b', 'c', 'd', 'e']})

# 保留'A'列中值为2和4的行
df = df[df['A'].isin([2, 4])]

print(df)

输出结果为:

代码语言:txt
复制
   A  B
1  2  b
3  4  d

在这个例子中,我们使用df['A'].isin([2, 4])创建了一个布尔条件,该条件表示只保留'A'列中值为2和4的行。然后,我们将这个条件应用于DataFrame的索引中,以筛选出满足条件的行。

  1. 使用loc方法:loc方法可以根据条件选择行和列,可以用于只保留特定的值。
代码语言:python
代码运行次数:0
复制
import pandas as pd

# 创建一个示例DataFrame
df = pd.DataFrame({'A': [1, 2, 3, 4, 5],
                   'B': ['a', 'b', 'c', 'd', 'e']})

# 保留'A'列中值为2和4的行
df = df.loc[df['A'].isin([2, 4])]

print(df)

输出结果为:

代码语言:txt
复制
   A  B
1  2  b
3  4  d

在这个例子中,我们使用df['A'].isin([2, 4])创建了一个布尔条件,该条件表示只保留'A'列中值为2和4的行。然后,我们使用loc方法将这个条件应用于DataFrame,以选择满足条件的行。

以上是在pandas中只保留特定值的两种常见方法。在实际应用中,可以根据具体需求选择适合的方法。

页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

  • Pandas如何查找某中最大

    一、前言 前几天在Python白银交流群【上海新年人】问了一个Pandas数据提取问题,问题如下:譬如我要查找某中最大,如何做? 二、实现过程 这里他自己给了一个办法,而且顺便增加了难度。...print(df[df.点击 == df['点击'].max()]),方法确实是可以行得通,也能顺利地解决自己问题。...顺利地解决了粉丝问题。 三、总结 大家好,我是皮皮。这篇文章主要盘点了一个Pandas数据提取问题,文中针对该问题,给出了具体解析和代码实现,帮助粉丝顺利解决了问题。...最后感谢粉丝【上海新年人】提出问题,感谢【瑜亮老师】给出思路,感谢【莫生气】、【添砖java】、【冯诚】等人参与学习交流。

    34610

    Python 数据处理 合并二维数组和 DataFrame 特定

    pandas.core.frame.DataFrame; 生成一个随机数数组; 将这个随机数数组与 DataFrame 数据合并成一个新 NumPy 数组。...numpy 是 Python 中用于科学计算基础库,提供了大量数学函数工具,特别是对于数组操作。pandas 是基于 numpy 构建一个提供高性能、易用数据结构和数据分析工具库。...在这个 DataFrame ,“label” 作为列名,列表元素作为数据填充到这一。...结果是一个新 NumPy 数组 arr,它将原始 DataFrame “label” 作为最后一附加到了随机数数组之后。...运行结果如下: 总结来说,这段代码通过合并随机数数组和 DataFrame 特定,展示了如何在 Python 中使用 numpy 和 pandas 进行基本数据处理和数组操作。

    13600

    用过Excel,就会获取pandas数据框架、行和

    在Excel,我们可以看到行、和单元格,可以使用“=”号或在公式引用这些。...在Python,数据存储在计算机内存(即,用户不能直接看到),幸运pandas库提供了获取值、行和简单方法。 先准备一个数据框架,这样我们就有一些要处理东西了。...df.columns 提供(标题)名称列表。 df.shape 显示数据框架维度,在本例为4行5。 图3 使用pandas获取 有几种方法可以在pandas获取。...在pandas,这类似于如何索引/切片Python列表。 要获取前三行,可以执行以下操作: 图8 使用pandas获取单元格 要获取单个单元格,我们需要使用行和交集。...记住这种表示法一个更简单方法是:df[列名]提供一,然后添加另一个[行索引]将提供该特定项。 假设我们想获取第2行Mary Jane所在城市。

    19.1K60

    对比Excel,Python pandas删除数据框架

    标签:Python与Excel,pandas 删除也是Excel常用操作之一,可以通过功能区或者快捷菜单命令或者快捷键来实现。...上一篇文章,我们讲解了Python pandas删除数据框架中行一些方法,删除与之类似。然而,这里想介绍一些新方法。取决于实际情况,正确地使用一种方法可能比另一种更好。...图2 del方法 del是Python一个关键字,可用于删除对象。我们可以使用它从数据框架删除。 注意,当使用del时,对象被删除,因此这意味着原始数据框架也会更新以反映删除情况。...实际上我们没有删除,而是创建了一个新数据框架,其中包含用户姓名、城市和性别,有效地“删除”了其他两。然后,我们将新创建数据框架赋值给原始数据框架以完成“删除操作”。注意代码双方括号。...重赋值 当数据框架只有几列时效果最好;或者数据框架有很多,但我们保留一些。 如果我们需要保留许多,必须键入计划保留所有列名称,这可能需要大量键入。

    7.2K20

    请教个问题,我想把数据名字重复删掉,保留年纪大怎么整呢?

    一、前言 国庆期间在Python白银交流群【谢峰】问了一个Pandas处理问题,提问截图如下: 代码如下: import pandas as pd data = [{'name': '小明', 'age...保留年龄最大那个 data = data.drop_duplicates('name', inplace=False) print(data) 二、实现过程 这里【甯同学】给了一个思路,先排个序,...': '小明', 'age': 20}, {'name': '小明', 'age': 38}] data = pd.DataFrame(data) # print(data) # 删除名字重复保留年龄最大那个...': 20}, {'name': '小明', 'age': 38}] data = pd.DataFrame(data) # print(data) # 删除名字重复保留年龄最大那个 data...这篇文章主要盘点了一个Pandas处理问题,文中针对该问题,给出了具体解析和代码实现,帮助粉丝顺利解决了问题。

    9510

    请教个问题,我想把数据名字重复删掉,保留年纪大怎么整呢?

    一、前言 国庆期间在Python白银交流群【谢峰】问了一个Pandas处理问题,提问截图如下: 代码如下: import pandas as pd data = [{'name': '小明', 'age...一、sort_values()函数用途 pandassort_values()函数原理类似于SQLorder by,可以将数据集依照某个字段数据进行排序,该函数即可根据指定数据也可根据指定行数据排序...=‘last’) 参数说明 参数 说明 by 指定列名(axis=0或’index’)或索引(axis=1或’columns’) axis 若axis=0或’index’,则按照指定数据大小排序;...若axis=1或’columns’,则按照指定索引数据大小排序,默认axis=0 ascending 是否按指定数组升序排列,默认为True,即升序排列 inplace 是否用排序后数据集替换原来数据...保留年龄最大那个) a = data.sort_values('age', ascending=False).drop_duplicates('name') print(a) 多条件根据排序删除重复

    1.7K10

    Python】基于某些删除数据框重复

    subset:用来指定特定,根据指定对数据框去重。默认为None,即DataFrame中一行元素全部相同时才去除。...导入数据处理库 os.chdir('F:/微信公众号/Python/26.基于多组合删除数据框重复') #把路径改为数据存放路径 name = pd.read_csv('name.csv...结果和按照某一去重(参数为默认)是一样。 如果想保留原始数据框直接用默认即可,如果想直接在原始数据框删重可设置参数inplace=True。...原始数据只有第二行和最后一行存在重复,默认保留第一条,故删除最后一条得到新数据框。 想要根据更多数去重,可以在subset添加。...但是对于两中元素顺序相反数据框去重,drop_duplicates函数无能为力。 如需处理这种类型数据去重问题,参见本公众号文章【Python】基于多组合删除数据框重复。 -end-

    19.4K31

    pythonpandasDataFrame对行和操作使用方法示例

    pandasDataFrame时选取行或: import numpy as np import pandas as pd from pandas import Sereis, DataFrame...'w',使用类字典属性,返回是Series类型 data.w #选择表格'w',使用点属性,返回是Series类型 data[['w']] #选择表格'w',返回是DataFrame...#利用index进行切片,返回是**前闭后闭**DataFrame, #即末端是包含 #——————新版本pandas已舍弃该方法,用iloc代替——————— data.irow...[0,2]] #选择第2-4行第1、3 Out[17]: a c two 5 7 three 10 12 data.ix[1:2,2:4] #选择第2-3行,3-5(不包括5) Out...github地址 到此这篇关于pythonpandasDataFrame对行和操作使用方法示例文章就介绍到这了,更多相关pandas库DataFrame行列操作内容请搜索ZaLou.Cn以前文章或继续浏览下面的相关文章希望大家以后多多支持

    13.4K30

    何在 Pandas 创建一个空数据帧并向其附加行和

    Pandas是一个用于数据操作和分析Python库。它建立在 numpy 库之上,提供数据帧有效实现。数据帧是一种二维数据结构。在数据帧,数据以表格形式在行和对齐。...它类似于电子表格或SQL表或Rdata.frame。最常用熊猫对象是数据帧。大多数情况下,数据是从其他数据源(csv,excel,SQL等)导入到pandas数据帧。...在本教程,我们将学习如何创建一个空数据帧,以及如何在 Pandas 向其追加行和。... Pandas 库创建一个空数据帧以及如何向其追加行和。...我们还了解了一些 Pandas 方法、它们语法以及它们接受参数。这种学习对于那些开始使用 Python  Pandas 库对数据帧进行操作的人来说非常有帮助。

    27130

    何在 Python 中计算列表唯一

    在本文中,我们将探讨四种不同方法来计算 Python 列表唯一。 在本文中,我们将介绍如何使用集合模块集合、字典、列表推导和计数器。...方法 1:使用集合 计算列表唯一最简单和最直接方法之一是首先将列表转换为集合。Python 集合是唯一元素无序集合,这意味着当列表转换为集合时,会自动删除重复。...生成集合unique_set仅包含唯一,我们使用 len() 函数来获取唯一计数。 方法 2:使用字典 计算列表唯一另一种方法是使用 Python 字典。...计数器类具有高效计数功能和附加功能,使其适用于高级计数任务。在选择适当方法来计算列表唯一时,请考虑特定于任务要求,例如效率和可读性。...每种方法都有其独特优势,可以根据手头任务特定需求进行选择。无论您选择集合简单性、字典灵活性、列表理解简洁性,还是计数器高级功能,Python 都提供了多种途径来完成计算列表唯一任务。

    31920

    Python】基于多组合删除数据框重复

    最近公司在做关联图谱项目,想挖掘团伙犯罪。在准备关系数据时需要根据两组合删除数据框重复,两中元素顺序可能是相反。...本文介绍一句语句解决多组合删除数据框重复问题。 一、举一个小例子 在Python中有一个包含3数据框,希望根据name1和name2组合(在两行顺序不一样)消除重复项。...二、基于两删除数据框重复 1 加载数据 # coding: utf-8 import os #导入设置路径库 import pandas as pd #导入数据处理库...import numpy as np #导入数据处理库 os.chdir('F:/微信公众号/Python/26.基于多组合删除数据框重复') #把路径改为数据存放路径 df =...numpy as np #导入数据处理库 os.chdir('F:/微信公众号/Python/26.基于多组合删除数据框重复') #把路径改为数据存放路径 name = pd.read_csv

    14.7K30

    删除重复,不只Excel,Python pandas更行

    标签:Python与Excel,pandas 在Excel,我们可以通过单击功能区“数据”选项卡上“删除重复项”按钮“轻松”删除表重复项。确实很容易!...此方法包含以下参数: subset:引用标题,如果考虑特定以查找重复,则使用此方法,默认为所有。 keep:保留哪些重复。’...图3 在上面的代码,我们选择不传递任何参数,这意味着我们检查所有是否存在重复项。唯一完全重复记录是记录#5,它被丢弃了。因此,保留了第一个重复。...图4 这一次,我们输入了一个列名“用户姓名”,并告诉pandas保留最后一个重复。现在pandas将在“用户姓名”检查重复项,并相应地删除它们。...图7 Python集 获取唯一另一种方法是使用Python数据结构set,集(set)基本上是一组唯一项集合。由于集包含唯一项,如果我们将重复项传递到集中,这些重复项将自动删除。

    6K30

    Python与Excel协同应用初学者指南

    标签:Python与Excel协同 本文将探讨学习如何在Python读取和导入Excel文件,将数据写入这些电子表格,并找到最好软件包来做这些事。...就像可以使用方括号[]从工作簿工作表特定单元格检索一样,在这些方括号,可以传递想要从中检索的确切单元格。...这将在提取单元格方面提供很大灵活性,而无需太多硬编码。让我们打印出第2包含。如果那些特定单元格是空,那么只是获取None。...可以在下面看到它工作原理: 图15 已经为在特定具有行检索了,但是如果要打印文件行而不只是关注一,需要做什么? 当然,可以使用另一个for循环。...另一个for循环,每行遍历工作表所有;为该行每一填写一个

    17.4K20

    pandas 入门 1 :数据集创建和绘制

    #导入本教程所需所有库#导入库特定函数一般语法: ## from(library)import(特定库函数) from pandas import DataFrame , read_csv import...此时名称无关紧要,因为它很可能只是由字母数字字符串(婴儿名称)组成。本专栏可能存在不良数据,但在此分析时我们不会担心这一点。在出生栏应该包含代表出生在一个特定年份具有特定名称婴儿数目的整数。...Out[1]: dtype('int64') 您所见,Births类型为int64,因此此列不会出现浮点数(十进制数字)或字母数字字符。...与该表一起,最终用户清楚地了解Mel是数据集中最受欢迎婴儿名称。plot()是一个方便属性,pandas可以让您轻松地在数据框绘制数据。我们学习了如何在上一节中找到Births最大。...最大 [df['Births'] == df['Births'].max()] 等于 [查找出生中等于973所有记录] df ['Names'] [df [' Births'] == df

    6.1K10

    numpy和pandas库实战——批量得到文件夹下多个CSV文件第一数据并求其最

    /前言/ 前几天群里有个小伙伴问了一个问题,关于Python读取文件夹下多个CSV文件第一数据并求其最大和最小,大家讨论甚为激烈,在此总结了两个方法,希望后面有遇到该问题小伙伴可以少走弯路...通常我们通过Python来处理数据,用比较多两个库就是numpy和pandas,在本篇文章,将分别利用两个库来进行操作。...3、其中使用pandas库来实现读取文件夹下多个CSV文件第一数据并求其最大和最小代码如下图所示。 ? 4、通过pandas库求取结果如下图所示。 ?...通过该方法,便可以快速取到文件夹下所有文件第一最大和最小。 5、下面使用numpy库来实现读取文件夹下多个CSV文件第一数据并求其最大和最小代码如下图所示。 ?.../小结/ 本文基于Python,使用numpy库和pandas库实现了读取文件夹下多个CSV文件,并求取文件第一数据最大和最小,当然除了这两种方法之外,肯定还有其他方法也可以做得到,欢迎大家积极探讨

    9.5K20

    python数据科学系列:pandas入门详细教程

    pandaspython+data+analysis组合缩写,是python基于numpy和matplotlib第三方数据分析库,与后两者共同构成了python数据分析基础工具包,享有数分三剑客之名...isin/notin,条件范围查询,即根据特定是否存在于指定列表返回相应结果 where,仍然是执行条件查询,但会返回全部结果,只是将不满足匹配条件结果赋值为NaN或其他指定,可用于筛选或屏蔽...检测各行是否重复,返回一个行索引bool结果,可通过keep参数设置保留第一行/最后一行/无保留,例如keep=first意味着在存在重复多行时,首行被认为是合法而可以保留 删除重复,drop_duplicates...时间类型向量化操作,字符串一样,在pandas另一个得到"优待"数据类型是时间类型,正如字符串列可用str属性调用字符串接口一样,时间类型可用dt属性调用相应接口,这在处理时间类型时会十分有效。...对象,功能与python普通map函数类似,即对给定序列每个执行相同映射操作,不同是seriesmap接口映射方式既可以是一个函数,也可以是一个字典 ?

    13.9K20
    领券