首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

Python rsa模块-如何使用现有的公钥

Python rsa模块是一个用于处理RSA加密和解密的库。它提供了一组函数和方法,使得使用现有的公钥进行加密和解密操作变得简单。

使用现有的公钥进行加密操作,可以按照以下步骤进行:

  1. 导入rsa模块:在Python代码中,首先需要导入rsa模块,可以使用以下语句实现:import rsa
  2. 加载公钥:使用rsa模块提供的rsa.PublicKey.load_pkcs1()方法,可以加载现有的公钥。该方法接受一个公钥字符串作为参数,可以是PEM格式或DER格式的公钥。例如:public_key = rsa.PublicKey.load_pkcs1(public_key_str)
  3. 加密数据:使用rsa模块提供的rsa.encrypt()方法,可以使用加载的公钥对数据进行加密。该方法接受两个参数,第一个参数是待加密的数据,第二个参数是公钥。例如:encrypted_data = rsa.encrypt(data, public_key)

完整的代码示例如下:

代码语言:python
代码运行次数:0
复制
import rsa

# 加载公钥
public_key_str = "-----BEGIN PUBLIC KEY-----\n...公钥字符串...\n-----END PUBLIC KEY-----"
public_key = rsa.PublicKey.load_pkcs1(public_key_str)

# 加密数据
data = b"Hello, World!"
encrypted_data = rsa.encrypt(data, public_key)

print(encrypted_data)

关于Python rsa模块的更多详细信息和用法,可以参考腾讯云的RSA加密解密文档:RSA加密解密

需要注意的是,以上答案中没有提及任何特定的云计算品牌商,如腾讯云、阿里云等。如果需要了解与Python rsa模块相关的腾讯云产品,可以参考腾讯云的文档或官方网站。

页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

  • 自动化运维之Ansible服务部署详述

    Ansible基本架构由六个部分组成: Ansible core 核心引擎。 Host inventory 主机清单:用来定义Ansible 所管理的主机,默认是在Ansible的host配置文件中定义被管理主机,同时也支持自定义动态主机清单和指定其他配置文件的位置。 Connection plugins连接插件:负责和被管理主机实现通信。除支持使用ssh连接被管理主机外, Ansible还支持其他的连接方式,所以需要有连接插件将各个主机用连接插件连接到 Ansible。 Playbooks(yaml, injaz2)剧本:用来集中定义 Ansible任务的配置文件,即将多个任务定义在一个剧本中由 Ansible自动执行,可以由控制主机针对多台被管理主机同时运行多个任务。 Core modules核心模块:是 Ansible自带的模块,使用这些模块将资源分发到被管理主机,使其执行特定任务或匹配特定的状态。 Custom modules自定义模块:用于完成模块功能的补充,可借助相关插件完成记录日志、发送邮件等功能。

    02

    25行代码实现完整的RSA算法

    python3.X版本的请点击这里25行代码实现完整的RSA算法   网络上很多关于RSA算法的原理介绍,但是翻来翻去就是没有一个靠谱、让人信服的算法代码实现,即使有代码介绍,也都是直接调用JDK或者Python代码包中的API实现,也有可能并没有把核心放在原理的实现上,而是字符串转数字啦、或者数字转字符串啦、或者即使有代码也都写得特别烂。无形中让人感觉RSA加密算法竟然这么高深,然后就看不下去了。看到了这样的代码我就特别生气,四个字:误人子弟。还有我发现对于“大整数的幂次乘方取模”竟然采用直接计算的幂次的值,再取模,类似于(2 ^ 1024) ^ (2 ^ 1024),这样的计算就直接去计算了,我不知道各位博主有没有运行他们的代码???知道这个数字有多大吗?这么说吧,把全宇宙中的物质都做成硬盘都放不下,更何况你的512M内存的电脑。所以我说他们的代码只可远观而不可亵玩已。   于是我用了2天时间,没有去参考网上的代码重新开始把RSA算法的代码完全实现了一遍以后发现代码竟然这么少,基本上25行就全部搞定。为了方便整数的计算,我使用了Python语言。为什么用Python?因为Python在数值计算上比较直观,即使没有学习过python的人,也能一眼就看懂了代码。而Java语言需要用到BigInteger类,数值的计算都是用方法调用,所以使用起来比较麻烦。如果有同学对我得代码感兴趣的话,先二话不说,不管3X7=22,把代码粘贴进pydev中运行一遍,是驴是马拉出来溜溜。看不懂可以私信我,我就把代码具体讲讲,如果本文章没有人感兴趣,我就不做讲解了。 RSA算法的步骤主要有以下几个步骤:     1、选择 p、q两个超级大的质数 ,都是1024位,显得咱们的程序货真价实。     2、令n = p * q。取 φ(n) =(p-1) * (q-1)。 计算与n互质的整数的个数。     3、取 e ∈ 1 < e < φ(n) ,( n , e )作为公钥对,正式环境中取65537。可以打开任意一个被认证过的https证书,都可以看到。     4、令 ed mod φ(n) = 1,计算d,( n , d ) 作为私钥对。 计算d可以利用扩展欧几里的算法进行计算,非常简单,不超过5行代码就搞定。     5、销毁 p、q。密文 = 明文 ^ e mod n , 明文 = 密文 ^ d mod n。利用蒙哥马利方法进行计算,也叫反复平方法,非常简单,不超过10行代码搞定。     实测:秘钥长度在2048位的时候,我的thinkpad笔记本T440上面、python2.7环境的运行时间是0.035秒,1024位的时候是0.008秒。说明了RSA加密算法的算法复杂度应该是O(N^2),其中n是秘钥长度。不知道能不能优化到O(NlogN)   代码主要涉及到三个Python可执行文件:计算最大公约数、大整数幂取模算法、公钥私钥生成及加解密。这三个文件构成了RSA算法的核心。   这个时候很多同学就不干了,说为什么我在网上看到的很多RSA理论都特别多,都分很多个章节,在每个章节中,都有好多个屏幕才能显示完,这么多的理论,想想怎么也得上千行代码才能实现,怎么到了你这里25行就搞定了呢?北门大官人你不会是在糊弄我们把?其实真的没有,我是良心博主,绝对不会糊弄大家,你们看到的理论确实这么多,我也都看过了,我把这些理论用了zip,gzip,hafuman,tar,rar等很多的压缩算法一遍遍地进行压缩,才有了这个微缩版的rsa代码实现,代码虽少,五脏俱全,是你居家旅行,课程设计、忽悠小白、必备良药。其实里边的几乎每一行代码都能写一篇博客专门进行介绍。   前方高能,我要开始装逼了。看不懂的童鞋请绕道,先去看看理论,具体内容如下:   1. 计算最大公约数   2. 超大整数的超大整数次幂取超大整数模算法(好拗口,哈哈,不拗口一点就显示不出这个算法的超级牛逼之处)   3. 公钥私钥生成

    02
    领券