首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

手把手教你做一个“渣”数据师,用Python代替老情人Excel

2、一些重要Pandas read_excel选项 ? 如果默认使用本地文件路径,用“\”表示,接受用“/”表示,更改斜杠可以文件添加到Python文件所在文件夹中。...可以用工作表名字,或一个整数值来当作工作表index。 ? 4、使用工作表中列作为索引 除非明确提到,否则索引添加到DataFrame中,默认情况下0开始。...5、略过行和 默认read_excel参数假定第一行是列表名称,会自动合并为DataFrame标签。...7、用列表筛选多种数值 ? 8、筛选不在列表或Excel中 ? 9、用多个条件筛选多数据 输入应为一个表,此方法相当于excel中高级过滤器功能: ? 10、根据数字条件过滤 ?...会用vlookup是很迷人,因为输出结果时像变魔术一样。可以非常自信地说它是电子表格上计算每个数据支柱。 不幸Pandas中并没有vlookup功能!

8.4K30

Pandas 25 式

操控缺失 把字符串分割为多 把 Series 里列表转换为 DataFrame 用多个函数聚合 用一个 DataFrame 合并聚合输出结果 选择行与 重塑多重索引 Series 创建透视表...调用 read_csv() 函数读取生成器表达式里每个文件,把读取结果传递给 concat() 函数,然后合并为一个 DataFrame。...把字符串分割为多 创建一个 DataFrame 示例。 ? 把姓名列分为姓与名两,用 str.split() 方法,按空格分割,并用 expand 关键字,生成一个 DataFrame。 ?...把 Series 里列表转换为 DataFrame 创建一个 DataFrame 示例。 ? 这里包含了两,第二包含Python 整数列表。...年龄列有 1 位小数,票价列有 4 位小数,如何这两显示小数位数标准化? 用以下代码让这两只显示 2 位小数。 ? 第一个参数是要设置选项名称,第二个参数是 Python 字符串格式。

8.4K00
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    数据分析篇 | PyCon 大咖亲传 pandas 25 式,长文建议收藏

    操控缺失 把字符串分割为多 把 Series 里列表转换为 DataFrame 用多个函数聚合 用一个 DataFrame 合并聚合输出结果 选择行与 重塑多重索引 Series 创建透视表...调用 read_csv() 函数读取生成器表达式里每个文件,把读取结果传递给 concat() 函数,然后合并为一个 DataFrame。...把字符串分割为多 创建一个 DataFrame 示例。 ? 把姓名列分为姓与名两,用 str.split() 方法,按空格分割,并用 expand 关键字,生成一个 DataFrame。 ?...把 Series 里列表转换为 DataFrame 创建一个 DataFrame 示例。 ? 这里包含了两,第二包含Python 整数列表。...年龄列有 1 位小数,票价列有 4 位小数,如何这两显示小数位数标准化? 用以下代码让这两只显示 2 位小数。 ? 第一个参数是要设置选项名称,第二个参数是 Python 字符串格式。

    7.1K20

    Python篇】详细学习 pandas 和 xlrd:从零开始

    pandas一个用于数据分析和处理强大 Python 库。它核心数据结构是 DataFrame 和 Series。...DataFramepandas核心数据结构之一,它是一个二维表格,类似于 Excel 表格。每个 DataFrame 都有行索引和标签。...df = pd.DataFrame(data) # 显示 DataFrame print(df) 解释 字典 data:我们创建了一个字典,其中每个键(如 'Name')代表一数据,每个键对应一个列表...pd.concat(df_list, ignore_index=True):所有读取 DataFrame并为一个 DataFrame,ignore_index=True 表示忽略原来行索引...删除包含缺失行: df.dropna():删除包含任何缺失行,返回一个 DataFrame

    22510

    Python 中,通过列表字典创建 DataFrame 时,若字典 key 顺序不一样以及部分字典缺失某些键,pandas 将如何处理?

    pandas 官方文档地址:https://pandas.pydata.org/ 在 Python 中,使用 pandas 库通过列表字典(即列表每个元素是一个字典)创建 DataFrame 时,如果每个字典...当通过列表字典来创建 DataFrame 时,每个字典通常代表一行数据,字典键(key)对应列名,而(value)对应该行该数据。如果每个字典中键顺序不同,pandas 将如何处理呢?...总的来说,这段代码首先导入了所需库,然后创建了一个包含多个字典列表,最后这个列表转换为 DataFrame,并输出查看。...输出结果展示如下: 我们从上面的示例就容易观察到: 生成 DataFrame顺序遵循了首次出现键顺序。...在个别字典中缺少某些键对应,在生成 DataFrame 中该位置被填补为 NaN。

    11700

    【小白必看】Python爬虫数据处理与可视化

    datas 使用pandas.DataFrame()方法二维列表转换为DataFrame对象df,每分别命名为'类型'、'书名'、'作者'、'字数'、'推荐' '推荐'数据类型转换为整型 数据统计与分组...]) # 每个配对数据以列表形式添加到datas列表中, # count[:-1]表示去掉count末尾字符(单位) df = pd.DataFrame(datas, columns...=['类型', '书名', '作者', '字数', '推荐']) # 使用pandas二维列表datas转换为DataFrame对象df,并为每一命名 df['推荐'] = df['推荐'].astype...对象df,并为每一命名 df.to_excel('data.xlsx', index=False) # DataFrame保存为Excel文件,文件名为data.xlsx,不包含索引 结束语...本文分析了一段Python代码,其主要功能是网页中提取数据并进行数据处理和可视化。

    14110

    业界 | 用Python做数据科学时容易忘记八个要点!

    为了一劳永逸地巩固我对这些概念理解,并为大家免去一些StackOverflow搜索,我在文章中整理了自己在使用Python,NumPy和Pandas时总是忘记东西。...具体来说,map函数接受一个列表并通过对每个元素执行某种操作来将其转换为列表。在下面的示例中,它遍历每个元素并将其乘以2结果映射到列表。请注意,这里list函数只是输出转换为列表类型。...,非常类似于map,但它通过每个元素与布尔过滤规则进行比较来返回原始列表子集。...我记得我最喜欢解释是这个: df.shape (# of Rows, # of Columns) Pandasdataframe调用shape属性时会返回一个元组,其中第一个表示行数,第二个表示数...Pandas内置pivot_table函数电子表格样式数据透视表创建为DataFrame

    1.4K00

    使用 Python 对相似索引元素上记录进行分组

    生成“分组”对象可用于分别对每个组执行操作和计算。 例 在下面的示例中,我们使用 groupby() 函数按“名称”对记录进行分组。然后,我们使用 mean() 函数计算每个学生平均分数。...第二行代码使用键(项)访问组字典中与该键关联列表,并将该项追加到列表中。 例 在下面的示例中,我们使用了一个默认词典,其中列表作为默认。...我们遍历了分数列表,并将主题分数对附加到默认句子中相应学生密钥中。生成字典显示分组记录,其中每个学生都有一个科目分数对列表。...语法 list_name.append(element) 在这里,append() 函数是一个列表方法,用于元素添加到list_name末尾。它通过指定元素添加为项来修改原始列表。...groupby() 函数根据日期对事件进行分组,我们迭代这些组以提取事件名称并将它们附加到 defaultdict 中相应日期键中。生成字典显示分组记录,其中每个日期都有一个事件列表

    22430

    AI网络爬虫:用kimi提取网页中表格内容

    在kimi中输入提示词: 你是一个Python编程专家,要完成一个编写爬取网页表格内容Python脚步任务,具体步骤如下: 在F盘新建一个Excel文件:freeAPI.xlsx 打开网页https...1行第1; 在tr标签内容定位第1个td标签里面的a标签,提取其href属性,保存到表格文件freeAPI.xlsx第1行第6; 在tr标签内容定位第2个td标签,提取其文本内容,保存到表格文件...; 注意: 每一步相关信息都要输出到屏幕上 源代码: import requests from bs4 import BeautifulSoup import pandas as pd # 网页URL...DataFrame添加到列表中 df_list.append(df) # 输出相关信息到屏幕 print(f"Extracted data from row: {extracted_data}") #...列表所有DataFrame并为一个DataFrame if df_list: combined_df = pd.concat(df_list, ignore_index=True) # 合并后

    19910

    干货:手把手教你用Python读写CSV、JSON、Excel及解析HTML

    要写入一个JSON文件,你可以对DataFrame使用.to_json()方法,返回数据写进一个文件,类似用Python读写CSV/TSV文件中介绍流程。 4....创建xlsx_read字典时,我们使用了字典表达式,这个做法很Python:不是显式地遍历工作表,元素添加到字典,而是使用字典表达式,让代码更可读、更紧凑。...# 生成 yield temp_dict iter_records方法是一个生成器:顾名思义,这个方法生成一些。...read_xml方法return语句传入所有字典中创建一个列表,转换成DataFrame。...使用DataFrame对象.apply(...)方法遍历内部每一行。第一个参数指定了要应用到每行记录上方法。axis参数默认为0。意味着指定方法会应用到DataFrame每一上。

    8.3K20

    Python时间序列转换为监督学习问题

    给定一个 DataFrame, shift() 函数可被用来创建数据副本,然后 push forward (NaN 组成添加到前面)或者 pull back(NaN 组成添加到末尾)。...'t'].shift(-1) print(df) 运行该例子显示出,最后一个一个 NaN 。...过去观察 (t-1, t-n) 被用来做预测。对于一个监督学习问题,在一个有输入、输出模式时间序列里,我们可以看到如何用正负 shift 来生成 DataFrame 。...The series_to_supervised() 函数 给定理想输入、输出序列长度,我们可以用 Pandas shift() 函数自动生成时间序列问题框架。 这是一个很有用工具。...函数返回一个单个: return: 序列 Pandas DataFrame 转为监督学习。 数据集创建为一个 DataFrame,每一通过变量字数和时间步命名。

    3.8K20

    解决pandas.core.frame.DataFrame格式数据与numpy.ndarray格式数据不一致导致无法运算问题

    问题描述在pandasDataFrame格式数据中,每一可以是不同数据类型,如数值型、字符串型、日期型等。而ndarray格式数据需要每个元素都是相同类型,通常为数值型。...= series_a + 1上述代码中,我们创建了一个变量​​series_a​​,A转换为ndarray并使用pd.Series()将其转换为pandasSeries数据格式。...要解决DataFrame格式数据与ndarray格式数据不一致导致无法运算问题,可以通过DataFrame某一转换为ndarray并重新赋值给变量,然后再进行运算。...然后,我们可以直接对这两个ndarray进行运算,得到每个产品销售总额。最后,运算结果添加到DataFrame​​Sales Total​​。...创建ndarray在numpy中,我们可以使用多种方式来创建ndarray对象:通过Python原生列表或元组创建:使用numpy.array()函数可以从一个Python原生列表或元组创建一个ndarray

    49320

    Python数学建模算法与应用 - 常用Python命令及程序注解

    具体来说,第三行列表推导式 [c for b in a for c in b] 可以解读为: 对于列表 a 中每个列表 b, 对于子列表 b 中每个元素 c, 元素 c 添加到列表中。...然后,我们 nums 列表作为可迭代对象传递给 map 函数,得到一个可迭代对象 squared_nums。最后,通过 squared_nums 转换为列表来打印出每个元素平方。...综上所述,该程序生成一个随机 DataFrame,修改了其中一个,提取了部分数据,增加了,然后重新索引,并最终删除了含有缺失行。...x = z**2 * np.sin(z):这行代码使用NumPy数组运算,z数组每个元素进行平方、再与z数组每个元素正弦相乘,生成一个数组,并将其赋值给变量x。...这个操作将用于生成3D图形中x坐标。 y = z**2 * np.cos(z):这行代码与上一行类似,只不过这里z数组每个元素余弦与平方相乘,生成一个数组,并将其赋值给变量y。

    1.4K30

    Pandas全景透视:解锁数据科学黄金钥匙

    底层使用C语言:Pandas许多内部操作都是用Cython或C语言编写,Cython是一种Python超集,它允许Python代码转换为C语言代码,从而提高执行效率。...具体来说,map()函数可以接受一个字典或一个函数作为参数,然后根据这个字典或函数对 Series 中每个元素进行映射或转换,生成一个 Series,并返回该 Series。...)运行结果 A B0 1 a1 2 b2 test test3 4 d③.extend() 函数,一个可迭代对象所有元素添加到列表末尾...举个例子# 创建一个列表list1 = [1, 2, 3]# 创建另一个列表list2 = [4, 5, 6]# 使用 extend() 方法 list2 扩展到 list1list1.extend(...list2)print(list1) # 输出: [1, 2, 3, 4, 5, 6]# 创建一个列表list1 = [1, 2, 3]# 创建一个字典dict1 = {'a': 10, 'b': 20

    10510

    针对SAS用户:Python数据分析库pandas

    PROC PRINT输出在此处不显示。 下面的单元格显示是范围按输出列表类似于PROC PRINT中VAR。注意此语法双方括号。这个例子展示了按标签切片。按行切片也可以。...它们是: 方法 动作 isnull() 生成布尔掩码以指示缺失 notnull() 与isnull()相反 drona() 返回数据过滤版本 fillna() 返回填充或估算缺失数据副本 下面我们详细地研究每个方法...通过.sum()方法链接到.isnull()方法,它会生成每个缺失计数。 ? 为了识别缺失,下面的SAS示例使用PROC格式来填充缺失和非缺失。...PROC FREQ与自变量_CHARACTER_和_NUMERIC_一起使用,为每个变量类型生成频率列表。 由于为每个变量产生单独输出,因此仅显示SAS输出一部分。...我们可能不希望df["col2"]中缺失替换为零,因为它们是字符串。该方法应用于使用.loc方法目标列表。第05章–了解索引中讨论了.loc方法详细信息。 ? ?

    12.1K20

    pandas.DataFrame()入门

    pandas.DataFrame()入门概述在数据分析和数据科学领域,pandas一个非常强大和流行Python库。...data​​是一个字典,其中键代表列名,代表列数据。我们​​data​​作为参数传递给​​pandas.DataFrame()​​函数来创建​​DataFrame​​对象。...访问和行:使用标签和行索引可以访问​​DataFrame​​中特定和行。增加和删除:使用​​assign()​​方法可以添加,使用​​drop()​​方法可以删除现有的。...我们还使用除法运算符计算了每个产品平均价格,并将其添加到DataFrame中。 最后,我们打印了原始DataFrame对象和计算后销售数据统计结果。...不适合处理实时数据流:pandas.DataFrame()需要一次性读取所有数据,不适合处理实时生成数据流。

    26210
    领券