这种开放性和灵活性的方法使数据存储和使用方式发生了转变。如今,客户可以选择在云对象存储(如 Amazon S3、Microsoft Azure Blob Storage或 Google Cloud Storage)中以开放表格式存储数据。数据由数据所有者全资拥有和管理,并保存在其安全的 Virtual Private Cloud (VPC) 帐户中。用户可以为其工作负载提供正确类型的查询引擎,而无需复制数据。这创建了一个面向未来的架构,可以在需要时将新工具添加到技术栈中。
大数据处理与分析是当今信息时代的核心任务之一。本文将介绍如何使用PySpark(Python的Spark API)进行大数据处理和分析的实战技术。我们将探讨PySpark的基本概念、数据准备、数据处理和分析的关键步骤,并提供示例代码和技术深度。
为了应对这些挑战,像 Streamlit[1] 这样的低代码工具作为 Python 生态系统的包装器,允许将 API、模型和业务逻辑变为现实。Streamlit 支持从数据库、API 和文件系统等各种来源轻松使用数据,从而轻松集成到应用程序中。在这篇博客中,我们将重点介绍如何使用直接来自开放湖仓一体平台的数据来构建数据应用。
将MySQL数据库中的冷数据备份并上传至云平台对象存储的过程。冷数据是指数据库中的历史或不经常访问的数据。我们首先通过执行SQL查询语句从MySQL数据库中提取所需数据,然后将其保存为CSV文件格式,接着通过SDK将备份文件上传到对象存储。
RDD(弹性分布式数据集) 是 PySpark 的基本构建块,它是容错、不可变的 分布式对象集合。
存储桶(Bucket)是对象的载体,可理解为存放对象的“容器”,且该“容器”无容量上限、对象以扁平化结构存放在存储桶中,无文件夹和目录的概念,用户可选择将对象存放到单个或多个存储桶中[1]。由于存储桶具有扩展性高、存储速度快、访问权限可自由配置等优势,如今已纳入各大公有云厂商的关键基础设施中。
RDD(弹性分布式数据集) 是 PySpark 的基本构建块,是spark编程中最基本的数据对象; 它是spark应用中的数据集,包括最初加载的数据集,中间计算的数据集,最终结果的数据集,都是RDD。 从本质上来讲,RDD是对象分布在各个节点上的集合,用来表示spark程序中的数据。以Pyspark为例,其中的RDD就是由分布在各个节点上的python对象组成,类似于python本身的列表的对象的集合。区别在于,python集合仅在一个进程中存在和处理,而RDD分布在各个节点,指的是【分散在多个物理服务器上的多个进程上计算的】 这里多提一句,尽管可以将RDD保存到硬盘上,但RDD主要还是存储在内存中,至少是预期存储在内存中的,因为spark就是为了支持机器学习应运而生。 一旦你创建了一个 RDD,就不能改变它。
在本篇文章中,我们将学习如何设计一个架构,通过该架构我们可以将文件上传到AWS S3,并在文件成功上传后触发一个Lambda函数。
学习本文,你将了解spark是干啥的,以及他的核心的特性是什么,然后了解这些核心特性的情况下,我们会继续学习,如何使用spark进行数据的采集/清洗/存储/和分析。
DataFrame可使用关系型变换进行操作,也可用于创建临时视图。将DataFrame注册为临时视图可以让你对其数据运行SQL查询。
本文最初发表于 Materialized View 网站,由 InfoQ 中文站翻译分享。
文章来源:火线Zone社区,链接:https://zone.huoxian.cn/d/907-aws-s3
曾经在15、16年那会儿使用Spark做机器学习,那时候pyspark并不成熟,做特征工程主要还是写scala。后来进入阿里工作,特征处理基本上使用PAI 可视化特征工程组件+ODPS SQL,复杂的话才会自己写python处理。最近重新学习了下pyspark,笔记下如何使用pyspark做特征工程。
ClickHouse是一个用于联机分析(OLAP)的列式数据库管理系统(DBMS),支持PB级数据量的交互式分析,ClickHouse最初是为YandexMetrica 世界第二大Web分析平台而开发的。多年来一直作为该系统的核心组件被该系统持续使用着。目前为止,该系统在ClickHouse中有超过13万亿条记录,并且每天超过200多亿个事件被处理。它允许直接从原始数据中动态查询并生成报告。自2016 年开源以来,ClickHouse 凭借其数倍于业界顶尖分析型数据库的极致性能,成为交互式分析领域的后起之秀,发展速度非常快。
对每个人而言,真正的职责只有一个:找到自我。然后在心中坚守其一生,全心全意,永不停息。所有其它的路都是不完整的,是人的逃避方式,是对大众理想的懦弱回归,是随波逐流,是对内心的恐惧 ——赫尔曼·黑塞《德米安》
参考资料:https://segment.com/blog/cultivating-your-data-lake/
MinIO 是一个基于Apache License v2.0开源协议的对象存储服务。它兼容亚马逊S3云存储服务接口,非常适合于存储大容量非结构化的数据,例如图片、视频、日志文件、备份数据和容器/虚拟机镜像等,而一个对象文件可以是任意大小,从几kb到最大5T不等。
作者简介 吴硕卫:腾讯云技术支持工程师,现负责腾讯云存储产品的技术支持专项工作。 S3cmd 是免费的命令行工具和客户端,用于在 Amazon S3 和其他兼容 S3 协议的对象存储中上传、下载和管理数据。本文主要介绍如何使用 S3cmd 访问 COS 上的文件。 准备工作 您已注册腾讯云账号,并且从访问管理控制台上获取了腾讯云密钥 SecretID 与 SecretKey。 一、使用环境 1、软件依赖 Python 2.6+/3+ 最新版本的 pip 2、安装及配置 环境安装与配置详细操作请参见 P
S3cmd 是免费的命令行工具和客户端,用于在 Amazon S3 和其他兼容 S3 协议的对象存储中上传、下载和管理数据。本文主要介绍如何使用 S3cmd 访问 COS 上的文件。
Ozone 的安装和运行有多种方式,支持从简单的本地节点 docker 部署,到大规模多节点的 Kubernetes 或物理集群部署。
S3 全名是 Simple Storage Service,简便的存储服务。amazon (S3) 是一个公开的服务,Web 应用程序开发人员可以使用它存储数字资产,包括图片、视频、音乐和文档。S3 提供一个 RESTful API 以编程方式实现与该服务的交互。可以通过 Amazon S3 随时在 Web 上的任何位置存储和检索的任意大小的数据。
PySpark 在 DataFrameReader 上提供了csv("path")将 CSV 文件读入 PySpark DataFrame 并保存或写入 CSV 文件的功能dataframeObj.write.csv("path"),在本文中,云朵君将和大家一起学习如何将本地目录中的单个文件、多个文件、所有文件读入 DataFrame,应用一些转换,最后使用 PySpark 示例将 DataFrame 写回 CSV 文件。
1.要访问不在 /s3v 卷下的已有bucket,我们可以在/s3v卷中创建symlink
在 Halodoc,我们始终致力于为最终用户简化医疗保健服务,随着公司的发展,我们不断构建和提供新功能。我们两年前建立的可能无法支持我们今天管理的数据量,以解决我们决定改进数据平台架构的问题。在我们之前的博客中,我们谈到了现有平台的挑战以及为什么我们需要采用 Lake House 架构来支持业务和利益相关者以轻松访问数据。在这篇博客中,我们将讨论我们的新架构、涉及的组件和不同的策略,以拥有一个可扩展的数据平台。
Apache Ozone 是一种分布式、可扩展和高性能的对象存储,可与Cloudera 数据平台(CDP) 一起使用,可以扩展到数十亿个不同大小的对象。它被设计为原生的对象存储,可提供极高的规模、性能和可靠性,以使用 S3 API 或传统的 Hadoop API 处理多个分析工作负载。
教程地址:http://www.showmeai.tech/tutorials/84
上篇:Docker 安装Minio Client,解决如何设置永久访问和下载链接 上上篇:SpringBoot 集成 Minio,实现使用自己 的文件服务器 上上上篇:Docker 安装 minio
描述: 对象存储(Object Storage)是一种存储数据的计算机体系结构,它以对象的形式存储和管理数据。与传统的文件系统和块存储不同,对象存储将数据作为对象存储在分布式的存储集群中,每个对象都有一个唯一的标识符(通常是一个URL),并且可以通过这个标识符来访问和检索数据。
系统版本:centos 7.3 安装方式 : yum ES版本环境: 6.0.1
如果在训练和推理系统中特征工程代码不相同,则存在代码不一致的风险,因此,预测可能不可靠,因为特征可能不相同。一种解决方案是让特征工程作业将特征据写入在线和离线数据库。训练和推理应用程序在做出预测时都需要读取特征-在线应用可能需要低延迟(实时)访问该特征数据,另一种解决方案是使用共享特征工程库(在线应用程序和训练应用程序使用相同的共享库)。
思源笔记除了官方的付费同步服务外,还开放了 S3 和 WebDAV 同步方式。刚好看到群晖推出的 Synology C2 Storage 兼容 S3 规则,免费账户提供 15G 存储和 15G 下载流量,无需绑定支付信息。搞起来~
Ozone 是 Hadoop 的分布式对象存储系统,具有易扩展和冗余存储的特点。Ozone 不仅能存储数十亿个不同大小的对象,还支持在容器化环境(比如 Kubernetes)中运行。Apache Spark、Hive 和 YARN 等应用无需任何修改即可使用 Ozone。Ozone 提供了 Java API、S3 接口和命令行接口,极大地方便了 Ozone 在不同应用场景下的使用。
Hudi表允许多种类型操作,包括非常常用的upsert,当然为支持upsert,Hudi依赖索引机制来定位记录在哪些文件中。
对于数据分析而言,数据大部分来源于外部数据,如常用的CSV文件、Excel文件和数据库文件等。Pandas库将外部数据转换为DataFrame数据格式,处理完成后再存储到相应的外部文件中。 Pandas 常用的导入格式:import pandas as pd
PySpark on HPC系列记录了我独自探索在HPC利用PySpark处理大数据业务数据的过程,由于这方面资料少或者搜索能力不足,没有找到需求匹配的框架,不得不手搓一个工具链,容我虚荣点,叫“框架”。框架的实现功能如下:
(声明:本篇文章授权活动官方亚马逊云科技文章转发、改写权,包括不限于在 亚马逊云科技开发者社区、知乎、自媒体平台、第三方开发者媒体等亚马逊云科技官方渠道)
在Quora上,大数据从业者经常会提出以下重复的问题:什么是数据工程(Data Engineering)? 如何成为一名数据科学家(Data Scientist)? 什么是数据分析师(Data Analyst)?
本文演示了使用外部表集成 Vertica 和 Apache Hudi。在演示中我们使用 Spark 上的 Apache Hudi 将数据摄取到 S3 中,并使用 Vertica 外部表访问这些数据。
本系列文章主要针对ETL大数据处理这一典型场景,基于python语言使用Oracle、aws、Elastic search 、Spark 相关组件进行一些基本的数据导入导出实战,如:
Elasticsearch 提供快照和恢复功能,我们可以在远程文件系统仓库(比如共享文件系统、S3、HDFS 等)中为部分索引或者整个集群创建快照。快照有以下使用场景:
存储结构:目前虾皮的存储结构从上到下主要分为存储层、调度层、计算引擎层和平台管理层。
元数据同步(sync)是Alluxio中的核心功能,它使文件和目录与所在存储系统下真实的来源保持一致,进而使用户能够轻松地从Alluxio中检索出最新版的数据。同时了解内部流程对调整性能也非常重要。本文介绍了Alluxio中保持元数据同步的设计和实现。
这两个库使用场景有些不同,Numpy擅长于数值计算,因为它基于数组来运算的,数组在内存中的布局非常紧凑,所以计算能力强。但Numpy不适合做数据处理和探索,缺少一些现成的数据处理函数。
作者 | 胡梦宇 审校 | 蔡芳芳 1 背景 随着云原生技术的飞速发展,各大公有云厂商提供的云服务也变得越来越标准、可靠和易用。凭借着云原生技术,用户不仅可以在不同的云上低成本部署自己的业务,而且还可以享受到每一个云厂商在特定技术领域上的优势服务,因此多云架构备受青睐。 知乎目前采用了多云架构,主要是基于以下考虑: 服务多活: 将同一个服务部署到不同的数据中心,防止单一数据中心因不可抗力不能正常提供服务,导致业务被“一锅端”; 容量扩展: 一般而言,在公司的服务器规模达到万台时,单一数据中心就很难
身份认证是 Ozone 组件识别用户身份的过程,Apache Ozone支持使用Kerberos和security tokens的强身份认证。
表格是存储数据的最典型方式,在Python环境中没有比Pandas更好的工具来操作数据表了。尽管Pandas具有广泛的能力,但它还是有局限性的。比如,如果数据集超过了内存的大小,就必须选择一种替代方法。但是,如果在内存合适的情况下放弃Pandas使用其他工具是否有意义呢?
Velero(以前称为 Heptio Ark)是一个开源工具,可以安全地备份和还原,执行灾难恢复以及迁移 Kubernetes 集群资源和持久卷,可以在 TKE 集群或自建 Kubenetes 集群中部署 Velero 用于:
领取专属 10元无门槛券
手把手带您无忧上云