首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

RDD编程

通过并行集合(列表)创建RDD 可以调用SparkContext的parallelize方法,在Driver中一个已经存在的集合(列表)上创建,从而实现并行化处理。...操作 含义 count() 返回数据集中的元素个数 collect() 以数组的形式返回数据集中的所有元素 first() 返回数据集中的第一个元素 take(n) 以数组的形式返回数据集中的前n个元素...3、设置分区的个数 (1)创建RDD时手动指定分区个数 在调用textFile()和parallelize()方法的时候手动指定分区个数即可,语法格式如下: sc.textFile(path, partitionNum...user/zhc/word.txt") >>> textFile = sc.textFile("word.txt") 同样,可以使用saveAsTextFile()方法把RDD中的数据保存到HDFS文件中...,命令如下: >>> textFile = sc.textFile("word.txt") >>> textFile.saveAsTextFile("writeback") (二)读写HBase数据 Hbase

5600
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    Python大数据之PySpark(三)使用Python语言开发Spark程序代码

    使用Python语言开发Spark程序代码 Spark Standalone的PySpark的搭建----bin/pyspark --master spark://node1:7077 Spark StandaloneHA...版本交互式界面】bin/pyspark --master xxx 【提交任务】bin/spark-submit --master xxxx 【学会配置】Windows的PySpark环境配置 1-安装...Andaconda 2-在Anaconda Prompt中安装PySpark 3-执行安装 4-使用Pycharm构建Project(准备工作) 需要配置anaconda的环境变量–参考课件 需要配置...结果: [掌握-扩展阅读]远程PySpark环境配置 需求:需要将PyCharm连接服务器,同步本地写的代码到服务器上,使用服务器上的Python解析器执行 步骤: 1-准备PyCharm...1,4],[2,5] # print(list(zip([1, 2, 3,6], [4, 5, 6])))#[1,4],[2,5] # 语法 lambda表达式语言:【lambda 变量:表达式】 # 列表表达式

    55320

    【原】Learning Spark (Python版) 学习笔记(二)----键值对、数据读取与保存、共享特性

    因为它依赖于Java序列化 文本文件   1 #读取文本文件 2 input=sc.textFile("文件地址") 3 #保存文本文件 4 result.saveAsTextFile(outputFile...它无法在Python中使用 Spark SQL中的结构化数据 Apache Hive 1 #Apache Hive 2 #用Python创建HiveContext并查询数据 3 from pyspark.sql...,关于SQL的其他命令可以看看Spark的官方文档(PySpark 1.6.1 documentation),讲的比较详细。...举个例子:假设我们从文件中读取呼号列表对应的日志,同时也想知道输入文件中有多少空行,就可以用到累加器。实例: 1 #一条JSON格式的呼叫日志示例 2 #数据说明:这是无线电操作者的呼叫日志。...,可以通过这个数据库查询日志中记录过的联系人呼号列表。

    2.1K80

    Spark编程实验二:RDD编程初级实践

    二、实验内容 1、pyspark交互式编程 给定数据集 data1.txt,包含了某大学计算机系的成绩,数据格式如下所示: Tom,DataBase,80 Tom,Algorithm,50 Tom...三、实验步骤 1、pyspark交互式编程 先在终端启动pyspark: [root@bigdata zhc]# pyspark (1)该系总共有多少学生; >>> lines = sc.textFile...>>> distinct_res.count() # 取元素总个数 执行结果: (3)Tom同学的总成绩平均分是多少; >>> lines = sc.textFile("file:///...res的数据格式为('小明', (269, 3)) res = data.reduceByKey(lambda x,y:(x[0]+y[0],x[1]+y[1])) #利用总成绩除以选修的课程数来计算每个学生的每门课程的平均分...(2)对于大规模数据的处理,需要考虑分区和并行计算,以提高计算效率。(3)需要注意数据类型和格式,确保数据的正确性和一致性。

    4200

    【Spark研究】Spark编程指南(Python版)

    /bin/pyspark 弹性分布式数据集(RDD) Spark是以RDD概念为中心运行的。RDD是一个容错的、可以被并行操作的元素集合。...Spark支持文本文件、序列文件以及其他任何Hadoop输入格式文件。 通过文本文件创建RDD要使用SparkContext的textFile方法。...PySpark同样支持写入和读出其他Hadoop输入输出格式,包括’新’和’旧’两种Hadoop MapReduce API。...记住,要确保这个类以及访问你的输入格式所需的依赖都被打到了Spark作业包中,并且确保这个包已经包含到了PySpark的classpath中。...(n, [ordering]) | 返回排序后的前n个元素 saveAsTextFile(path) | 将数据集的元素写成文本文件 saveAsSequenceFile(path) | 将数据集的元素写成序列文件

    5.1K50

    Windows 安装配置 PySpark 开发环境(详细步骤+原理分析)

    1.4 Python中安装PySpark模块 同样也是那两种方法 (1)使用pip安装pyspark。pip install pyspark 会安装最新的版本的pyspark。...conf=conf.setAppName("wordcount").setMaster("local") sc=SparkContext(conf=conf) lines=sc.textFile...partition length = %d"%(lines.getNumPartitions())) result.foreach(lambda x:print(x)) result.saveAsTextFile...),Spark 代码归根结底是运行在 JVM 中的,这里 python 借助 Py4j 实现 Python 和 Java 的交互,即通过 Py4j 将 pyspark 代码“解析”到 JVM 中去运行。...例如,在 pyspark 代码中实例化一个 SparkContext 对象,那么通过 py4j 最终在 JVM 中会创建 scala 的 SparkContext 对象及后期对象的调用、在 JVM 中数据处理消息的日志会返回到

    15.8K30

    RDD操作——文件数据读写

    要加载本地文件,必须采用“file:///”开头的这种格式。执行上上面这条命令以后,并不会马上显示结果,因为,Spark采用惰性机制,只有遇到“行动”类型的操作,才会从头到尾执行所有操作。...scala> val textFile = sc.textFile("file:///root/app/spark/input/word.txt") textFile: org.apache.spark.rdd.RDD...[String] = file:///root/app/spark/input/word.txt MapPartitionsRDD[87] at textFile at :24 scala...> textFile.first res52: String = hello world first()是一个“行动”(Action)类型的操作,会启动真正的计算过程,从文件中加载数据到变量textFile...saveAsTextFile saveAsTextFile()是一个“行动”(Action)类型的操作,所以,马上会执行真正的计算过程,从word.txt中加载数据到变量textFile中

    62750

    【Python】PySpark 数据输入 ① ( RDD 简介 | RDD 中的数据存储与计算 | Python 容器数据转 RDD 对象 | 文件文件转 RDD 对象 )

    容器数据 转换为 PySpark 的 RDD 对象 ; PySpark 支持下面几种 Python 容器变量 转为 RDD 对象 : 列表 list : 可重复 , 有序元素 ; 元组 tuple :...执行环境 入口对象 sparkContext = SparkContext(conf=sparkConf) 再后 , 创建一个包含整数的简单列表 ; # 创建一个包含列表的数据 data = [1,...是 列表 , 元素是单个字符 ; data5 = "Tom" # 输出结果 rdd5 分区数量和元素: 12 , ['T', 'o', 'm'] 代码示例 : """ PySpark 数据处理...] Process finished with exit code 0 三、文件文件转 RDD 对象 ---- 调用 SparkContext#textFile 方法 , 传入 文件的 绝对路径 或...) # 读取文件内容到 RDD 中 rdd = sparkContext.textFile("data.txt") # 打印 RDD 的元素 print("rdd1 分区数量和元素: ", rdd.getNumPartitions

    49510

    Spark:大数据处理的下一代引擎

    它是一个开源的、快速的、通用的大数据处理框架,用于分布式数据处理和分析。本文将深入探讨Spark的核心概念、架构、应用领域,并提供示例代码,以帮助读者更好地理解和应用Spark技术。...**Spark的概念:** Spark是一个开源的分布式数据处理框架,它的核心特点包括: - **速度:** Spark是一款快速的引擎,它可以在内存中高效地执行数据处理任务。...```python # Spark WordCount示例 from pyspark import SparkContext, SparkConf conf = SparkConf().setAppName...("WordCount") sc = SparkContext(conf=conf) text_file = sc.textFile("textfile.txt") word_counts = text_file.flatMap...                      .map(lambda word: (word, 1)) \                       .reduceByKey(lambda a, b: a + b) word_counts.saveAsTextFile

    14810

    【Python】PySpark 数据计算 ③ ( RDD#reduceByKey 函数概念 | RDD#reduceByKey 方法工作流程 | RDD#reduceByKey 语法 | 代码示例 )

    ", 12) PySpark 中 , 将 二元元组 中 第一个元素 称为 键 Key , 第二个元素 称为 值 Value ; 按照 键 Key 分组 , 就是按照 二元元组 中的 第一个元素 的值进行分组...被组成一个列表 ; 然后 , 对于 每个 键 key 对应的 值 value 列表 , 使用 reduceByKey 方法提供的 函数参数 func 进行 reduce 操作 , 将列表中的元素减少为一个..., 统计文件中单词的个数 ; 思路 : 先 读取数据到 RDD 中 , 然后 按照空格分割开 再展平 , 获取到每个单词 , 根据上述单词列表 , 生成一个 二元元组 列表 , 列表中每个元素的 键...RDD 对象 , 该 RDD 对象中 , 列表中的元素是 字符串 类型 , 每个字符串的内容是 整行的数据 ; # 将 文件 转为 RDD 对象 rdd = sparkContext.textFile...列表中的元素 转为二元元组 , 第一个元素设置为 单词 字符串 , 第二个元素设置为 1 # 将 rdd 数据 的 列表中的元素 转为二元元组, 第二个元素设置为 1 rdd3 = rdd2.map(lambda

    76220
    领券