首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

合并excel的两列,为空的单元格被另一列有值的替换?

一、前言 前几天在Python铂金交流群【逆光】问了一个Pandas数据处理的问题,问题如下:请问 合并excel的两列,为空的单元格被另一列有值的替换。...【逆光】:好的,我去看看这个函数谢谢 【逆光】:我列表的两列不挨着, a b互补,我需要变成c (c 包含 a 和 b) 【Siris】:最笨的方法遍历判断呗 【逆光】:太慢了,我的数据有点多。...我不写,就报这个错 【瑜亮老师】:有很多种写法,最简单的思路是分成3行代码。就是你要给哪一列全部赋值为相同的值,就写df['列名'] = '值'。不要加方括号,如果是数字,就不要加引号。...【瑜亮老师】:3列一起就是df.loc[:, ['列1', '列', '列3'']] = ["值", 0, 0] 【不上班能干啥!】:起始这行没有报错,只是警告,因为你这样操作会影响赋值前的变量。...这篇文章主要盘点了一个Pandas数据处理的问题,文中针对该问题,给出了具体的解析和代码实现,帮助粉丝顺利解决了问题。

11910

【Python】基于某些列删除数据框中的重复值

subset:用来指定特定的列,根据指定的列对数据框去重。默认值为None,即DataFrame中一行元素全部相同时才去除。...默认值False,即把原数据copy一份,在copy数据上删除重复值,并返回新数据框(原数据框不改变)。值为True时直接在原数据视图上删重,没有返回值。...注:后文所有的数据操作都是在原始数据集name上进行。 三、按照某一列去重 1 按照某一列去重(参数为默认值) 按照name1对数据框去重。...从结果知,参数为默认值时,是在原数据的copy上删除数据,保留重复数据第一条并返回新数据框。 感兴趣的可以打印name数据框,删重操作不影响name的值。...结果和按照某一列去重(参数为默认值)是一样的。 如果想保留原始数据框直接用默认值即可,如果想直接在原始数据框删重可设置参数inplace=True。

20.5K31
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    【Python】基于多列组合删除数据框中的重复值

    最近公司在做关联图谱的项目,想挖掘团伙犯罪。在准备关系数据时需要根据两列组合删除数据框中的重复值,两列中元素的顺序可能是相反的。...本文介绍一句语句解决多列组合删除数据框中重复值的问题。 一、举一个小例子 在Python中有一个包含3列的数据框,希望根据列name1和name2组合(在两行中顺序不一样)消除重复项。...二、基于两列删除数据框中的重复值 1 加载数据 # coding: utf-8 import os #导入设置路径的库 import pandas as pd #导入数据处理的库...import numpy as np #导入数据处理的库 os.chdir('F:/微信公众号/Python/26.基于多列组合删除数据框中的重复值') #把路径改为数据存放的路径 df =...从上图可以看出用set替换frozense会报不可哈希的错误。 三、把代码推广到多列 解决多列组合删除数据框中重复值的问题,只要把代码中取两列的代码变成多列即可。

    14.7K30

    独家 | 一文读懂PySpark数据框(附实例)

    本文中我们将探讨数据框的概念,以及它们如何与PySpark一起帮助数据分析员来解读大数据集。 数据框是现代行业的流行词。...在本文中,我将讨论以下话题: 什么是数据框? 为什么我们需要数据框? 数据框的特点 PySpark数据框的数据源 创建数据框 PySpark数据框实例:国际足联世界杯、超级英雄 什么是数据框?...数据框通常除了数据本身还包含定义数据的元数据;比如,列和行的名字。 我们可以说数据框不是别的,就只是一种类似于SQL表或电子表格的二维数据结构。...大卸八块 数据框的应用编程接口(API)支持对数据“大卸八块”的方法,包括通过名字或位置“查询”行、列和单元格,过滤行,等等。统计数据通常都是很凌乱复杂同时又有很多缺失或错误的值和超出常规范围的数据。...数据框结构 来看一下结构,亦即这个数据框对象的数据结构,我们将用到printSchema方法。这个方法将返回给我们这个数据框对象中的不同的列信息,包括每列的数据类型和其可为空值的限制条件。 3.

    6K10

    Spark Extracting,transforming,selecting features

    ,也就是相似度问题,它使得相似度很高的数据以较高的概率映射为同一个hash值,而相似度很低的数据以极低的概率映射为同一个hash值,完成这个功能的函数,称之为LSH); 目录: 特征提取: TF-IDF...N的真值序列转换到另一个在频域的长度为N的真值序列,DCT类提供了这一功能; from pyspark.ml.feature import DCT from pyspark.ml.linalg import...的列,设置参数maxCategories; 基于列的唯一值数量判断哪些列需要进行类别索引化,最多有maxCategories个特征被处理; 每个特征索引从0开始; 索引类别特征并转换原特征值为索引值;...(类别号为分位数对应),通过numBuckets设置桶的数量,也就是分为多少段,比如设置为100,那就是百分位,可能最终桶数小于这个设置的值,这是因为原数据中的所有可能的数值数量不足导致的; NaN值:...在这个例子中,Imputer会替换所有Double.NaN为对应列的均值,a列均值为3,b列均值为4,转换后,a和b中的NaN被3和4替换得到新列: a b out_a out_b 1.0 Double.NaN

    21.9K41

    PySpark︱DataFrame操作指南:增删改查合并统计与数据处理

    functions **另一种方式通过另一个已有变量:** **修改原有df[“xx”]列的所有值:** **修改列的类型(类型投射):** 修改列名 --- 2.3 过滤数据--- 3、-------...另一种方式通过另一个已有变量: result3 = result3.withColumn('label', df.result*0 ) 修改原有df[“xx”]列的所有值: df = df.withColumn...,一列为分组的组名,另一列为行总数 max(*cols) —— 计算每组中一列或多列的最大值 mean(*cols) —— 计算每组中一列或多列的平均值 min(*cols) ——...计算每组中一列或多列的最小值 sum(*cols) —— 计算每组中一列或多列的总和 — 4.3 apply 函数 — 将df的每一列应用函数f: df.foreach(f) 或者 df.rdd.foreach...那么及时反映; Pyspark DataFrame的数据框是不可变的,不能任意添加列,只能通过合并进行; pandas比Pyspark DataFrame有更多方便的操作以及很强大 转化为RDD 与Spark

    30.5K10

    使用CDSW和运营数据库构建ML应用3:生产ML模型

    公司现在使用这种类型的数据实时通知消费者和员工。这些公司的另一个重要需求是,在实时提供更多数据时,可以轻松地改进其模型。 一种特定的用例是检测欺诈性的信用卡交易。...在HBase和HDFS中训练数据 这是训练数据的基本概述: 如您所见,共有7列,其中5列是传感器读数(温度,湿度比,湿度,CO2,光)。...在此演示中,此训练数据的一半存储在HDFS中,另一半存储在HBase表中。该应用程序首先将HDFS中的数据加载到PySpark DataFrame中,然后将其与其余训练数据一起插入到HBase表中。...这使我们可以将所有训练数据都放在一个集中的位置,以供我们的模型使用。 合并两组训练数据后,应用程序将通过PySpark加载整个训练表并将其传递给模型。...项目上运行preprocessing.py 这会将所有训练数据放入HBase 在CDSW项目上上传并运行main.py 创建模型 构建和评分批次评分表 将批次分数表存储在HBase中 在CDSW项目上上传并运行

    2.8K10

    PySpark 数据类型定义 StructType & StructField

    虽然 PySpark 从数据中推断出模式,但有时我们可能需要定义自己的列名和数据类型,本文解释了如何定义简单、嵌套和复杂的模式。...StructType是StructField的集合,它定义了列名、列数据类型、布尔值以指定字段是否可以为空以及元数据。...其中,StructType 是 StructField 对象的集合或列表。 DataFrame 上的 PySpark printSchema()方法将 StructType 列显示为struct。...下面学习如何将列从一个结构复制到另一个结构并添加新列。PySpark Column 类还提供了一些函数来处理 StructType 列。...在下面的示例中,列hobbies定义为 ArrayType(StringType) ,列properties定义为 MapType(StringType, StringType),表示键和值都为字符串。

    1.3K30

    pyspark之dataframe操作

    方法 #如果a中值为空,就用b中的值填补 a[:-2].combine_first(b[2:]) #combine_first函数即对数据打补丁,用df2的数据填充df1中的缺失值 df1.combine_first...# 2.用均值替换缺失值 import math from pyspark.sql import functions as func # 导入spark内置函数 # 计算缺失值,collect()函数将数据返回到...() # 4.填充缺失值 # 对所有列用同一个值填充缺失值 df1.na.fill('unknown').show() # 5.不同的列用不同的值填充 df1.na.fill({'LastName'...:'--', 'Dob':'unknown'}).show() 9、空值判断 有两种空值判断,一种是数值类型是nan,另一种是普通的None # 类似 pandas.isnull from pyspark.sql.functions...']) 12、 生成新列 # 数据转换,可以理解成列与列的运算 # 注意自定义函数的调用方式 # 0.创建udf自定义函数,对于简单的lambda函数不需要指定返回值类型 from pyspark.sql.functions

    10.5K10

    PySpark SQL——SQL和pd.DataFrame的结合体

    而为了实现这一目的,Spark团队推出SQL组件,一方面满足了多种数据源的处理问题,另一方面也为机器学习提供了全新的数据结构DataFrame(对应ml子模块)。...Column:DataFrame中每一列的数据抽象 types:定义了DataFrame中各列的数据类型,基本与SQL中的数据类型同步,一般用于DataFrame数据创建时指定表结构schema functions...:这是PySpark SQL之所以能够实现SQL中的大部分功能的重要原因之一,functions子类提供了几乎SQL中所有的函数,包括数值计算、聚合统计、字符串以及时间函数等4大类,后续将专门予以介绍...03 DataFrame DataFrame是PySpark中核心的数据抽象和定义,理解DataFrame的最佳方式是从以下2个方面: 是面向二维关系表而设计的数据结构,所以SQL中的功能在这里均有所体现...,以及对单列进行简单的运算和变换,具体应用场景可参考pd.DataFrame中赋值新列的用法,例如下述例子中首先通过"*"关键字提取现有的所有列,而后通过df.age+1构造了名字为(age+1)的新列

    10K20

    PySpark UD(A)F 的高效使用

    需要注意的一件重要的事情是,除了基于编程数据的处理功能之外,Spark还有两个显著的特性。一种是,Spark附带了SQL作为定义查询的替代方式,另一种是用于机器学习的Spark MLlib。...利用to_json函数将所有具有复杂数据类型的列转换为JSON字符串。因为Arrow可以轻松处理字符串,所以可以使用pandas_udf装饰器。...在UDF中,将这些列转换回它们的原始类型,并进行实际工作。如果想返回具有复杂类型的列,只需反过来做所有事情。...Spark数据帧转换为一个新的数据帧,其中所有具有复杂类型的列都被JSON字符串替换。...,并用封装类装饰 为简单起见,假设只想将值为 42 的键 x 添加到 maps 列中的字典中。

    19.7K31

    【Python篇】深入挖掘 Pandas:机器学习数据处理的高级技巧

    1.1 缺失值处理 数据中的缺失值常常会影响模型的准确性,必须在预处理阶段处理。Pandas 提供了丰富的缺失值处理方法: 删除缺失值:可以删除包含缺失值的行或列。...填充缺失值:可以使用均值、中位数、最常见值或自定义值填充缺失值。...标准化 和 归一化 是两种常用的预处理方法: 标准化:将数据按均值为 0、标准差为 1 的方式缩放。 归一化:将数据缩放到 [0, 1] 或 [-1, 1] 的范围内。...常用的编码方法有: Label Encoding:将分类值转换为数字。 One-Hot Encoding:为每个分类值创建一个新的列。...你可以将 Pandas 的代码迁移到 PySpark 上,处理超大规模数据。

    23910

    大数据开发!Pandas转spark无痛指南!⛵

    中,我们最方便的数据承载数据结构都是 dataframe,它们的定义有一些不同,我们来对比一下看看: Pandascolumns = ["employee","department","state",...中可以指定要分区的列:df.partitionBy("department","state").write.mode('overwrite').csv(path, sep=';')注意 ②可以通过上面所有代码行中的...,dfn]df = unionAll(*dfs) 简单统计Pandas 和 PySpark 都提供了为 dataframe 中的每一列进行统计计算的方法,可以轻松对下列统计值进行统计计算:列元素的计数列元素的平均值最大值最小值标准差三个分位数...:25%、50% 和 75%Pandas 和 PySpark 计算这些统计值的方法很类似,如下: Pandas & PySparkdf.summary()#或者df.describe() 数据分组聚合统计...,我们经常要进行数据变换,最常见的是要对「字段/列」应用特定转换,在Pandas中我们可以轻松基于apply函数完成,但在PySpark 中我们可以使用udf(用户定义的函数)封装我们需要完成的变换的Python

    8.2K72

    浅谈pandas,pyspark 的大数据ETL实践经验

    脏数据的清洗 比如在使用Oracle等数据库导出csv file时,字段间的分隔符为英文逗号,字段用英文双引号引起来,我们通常使用大数据工具将这些数据加载成表格的形式,pandas ,spark中都叫做...比如 使用enconv 将文件由汉字编码转换成utf-8 enconv -L zh_CN -x UTF-8 filename 或者要把当前目录下的所有文件都转成utf-8 enca -L zh_CN -...下面看一下convmv的具体用法: convmv -f 源编码 -t 新编码 [选项] 文件名 #将目录下所有文件名由gbk转换为utf-8 convmv -f GBK -t UTF-8 -r --nosmart...如果其中有值为None,Series会输出None,而DataFrame会输出NaN,但是对空值判断没有影响。...数据质量核查与基本的数据统计 对于多来源场景下的数据,需要敏锐的发现数据的各类特征,为后续机器学习等业务提供充分的理解,以上这些是离不开数据的统计和质量核查工作,也就是业界常说的让数据自己说话。

    5.5K30

    Pyspark处理数据中带有列分隔符的数据集

    本篇文章目标是处理在数据集中存在列分隔符或分隔符的特殊场景。对于Pyspark开发人员来说,处理这种类型的数据集有时是一件令人头疼的事情,但无论如何都必须处理它。...使用spark的Read .csv()方法读取数据集: #create spark session import pyspark from pyspark.sql import SparkSession...从文件中读取数据并将数据放入内存后我们发现,最后一列数据在哪里,列年龄必须有一个整数数据类型,但是我们看到了一些其他的东西。这不是我们所期望的。一团糟,完全不匹配,不是吗?...我们已经成功地将“|”分隔的列(“name”)数据分成两列。现在,数据更加干净,可以轻松地使用。...现在的数据看起来像我们想要的那样。

    4K30

    【PySpark入门】手把手实现PySpark机器学习项目-回归算法

    默认情况下,drop()方法将删除包含任何空值的行。我们还可以通过设置参数“all”,当且仅当该行所有参数都为null时以删除该行。这与pandas上的drop方法类似。...select方法将显示所选列的结果。我们还可以通过提供用逗号分隔的列名,从数据框架中选择多个列。...将分类变量转换为标签 我们还需要通过在Product_ID上应用StringIndexer转换将分类列转换为标签,该转换将标签的Product_ID列编码为标签索引的列。...选择特征来构建机器学习模型 首先,我们需要从pyspark.ml.feature导入RFormula;然后,我们需要在这个公式中指定依赖和独立的列;我们还必须为为features列和label列指定名称...让我们导入一个在pyspark.ml中定义的随机森林回归器。然后建立一个叫做rf的模型。我将使用随机森林算法的默认参数。

    8.1K51
    领券