首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

单变量线性回归模型与结果解读

模型一般形式 统计模型的一般形式是Y=m(X)+e。其中Y为输出变量、响应变量、因变量、被解释变量;m为均值;e为不可控因子,可以理解为噪声。...故模型等式右边是用X组成的函数去描述Y的均值,即模型是在平均的意义下去描述自变量与因变量间的关系,所以在解读模型的时候,我不会将模型说死。...单变量线性回归模型SAS示例 单变量线性回归模型一般形式为:Y=b0+b1X1+e。其中Y为因变量,X为自变量或预测变量,e为扰动项,b为模型的系数。...如下示例建模背景为针对消费与收入构建单变量线性回归模型,下面为SAS实现代码以及我对模型结果的解读思路: PROC REG DATA=XUHUI PLOTS(ONLY)=ALL; Linear_Regression_Model...: 1、看F检验结果与调整R方: F检验,如果P值小则为合理; 调整R方,这里调整R方过小,说明这个一元回归模型可能仅仅一个自变量是不够的; ?

2.1K20

基于隐变量的推荐模型基于隐变量的推荐模型

基于隐变量的推荐模型 ?...,系统的推荐效果并不是线性增加的 矩阵中元素稀疏,在计算过程中,随机的增减一个维度,对结果影响很大 为了解决上面的问题,于是就有人发明了矩阵分解的方法,矩阵分解简单讲看下面图: ?...现在总结下上面讲的隐向量模型,隐向量模型尝试建立从隐藏变量到最终预测值之间的关系,在前面介绍的矩阵分解中,我们的输入是用户id和物品id,然后通过矩阵分解的方法,我们得到了用户的隐藏向量和物品的隐藏向量...分解机FM的基本原理是:不仅对显性变量建模,而且对显性变量之间的关系进行建模,在对显性变量关系建模的过程中使用了隐变量的方法。...总结 本文介绍了基于隐变量原理两种算法:矩阵分解svd和分解机FM,其求解方法有:梯度下降和交替最小二乘法;在介绍完求解方法后,我们讨论svd的一些变种,以及集大成者FM是如何进行多模型融合的。

1.7K40
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    如何为ABAQUS结果文件加入新的场变量

    ABAQUS软件提供了大量可输出的场变量类型,用来进行结果分析,但仍然有一些场变量ABAQUS软件并不支持,对于这种情形我们可以通过以下两种方式向ABAQUS结果文件中加入: (1)使用USDFLD...子程序,对于计算过程有无影响的场变量均适用,可以参考本公众号的早期文章【阿信ABAQUS子程序(7)】USDFLD; (2)使用Python脚本程序,该方式适用于对已经计算完的ODB结果文件加入新的场变量...下面以一个例子来说明如何使用Python脚本程序对已有的计算结果文件加入新的场变量。需要说明的一点是,修改结果文件不能采用只读的模式打开。...如下图所示,我们将计算结果中的节点温度NT11提取出来,并创建新的场变量UserTemp到结果文件中,计算结果对比如下图所示。显然,新加入场变量和软件计算结果吻合,程序正确。具体实现方式见图后代码。...# coding: utf-8 ############################### # Python 脚本创建新的场变量 # ############################

    75110

    线性回归的结果解释 I:变量测度单位变换的影响

    变量测度单位变换对结果解读的影响 执行回归命令前,明确变量的单位至关重要。...表1展示了一个示例数据的变量描述性统计结果。...因变量测度单位成倍变化的影响 表2中的模型(1)和模型(2)分别展示了不同收入测量单位下的回归结果,可得样本回归函数(sample regression function)或OLS回归直线...自变量测度单位成倍变化的影响 表3中的模型(1)和模型(2)分别展示了不同经营收益测量单位下的回归结果,可得样本回归函数(sample regression function)或OLS回归直线...上述结果还缺少因变量单位为 $1、自变量单位为0.01时的回归结果。 为此,表4展示了所有可能的组合。

    4.6K151

    虚拟变量在模型中的作用

    模型中引入了虚拟变量,虽然模型看似变的略显复杂,但实际上模型变的更具有可描述性。...例如如下的虚拟变量: 1表示男生,则0表示女生; 1表示蒙古族,则0表示非蒙古族; 1表示清明节前,则0表示清明节后。 虚拟变量该怎样设置 构建模型时,可以利用虚拟变量进行变量区间划分。...例如: 构建居民存款影响因素模型时,可将年龄作为自变量引入模型,将年龄变量划分为“35岁前”与“35岁后”两个区间; 构建消费影响因素模型时,可将历史时期作为自变量引入模型,将历史时期变量划分为“改革开放以前...建模数据不符合假定怎么办 构建回归模型时,如果数据不符合假定,一般我首先考虑的是数据变换,如果无法找到合适的变换方式,则需要构建分段模型,即用虚拟变量表示模型中解释变量的不同区间,但分段点的划分还是要依赖经验的累积...回归模型的解读 回归模型可以简单这样理解: 如果模型为 log(wage)=x0+x1*edu+u 的形式,则可以简单理解为:X每变化一个单位,则Y变化的百分点数; 如果模型为 log(wage)=x0

    4.3K50

    回归模型的变量筛选与预测

    我眼中的回归变量筛选 变量筛选是回归建模过程关键的一步,由于变量间的相关性,必然会导致不同的筛选方法得到不同的模型。...然而经向前法、向后法与逐步回归法筛选出的变量构建的模型并不是最优模型,若想构建最优模型,可以通过构建每个X的组合去获取最优变量组合,即全子集法。...实际场景中,我会先对样本进行小额抽样或变量粗筛,在减少变量个数后使用全子集法进行变量选择,最后会用逐步法进行变量的进一步筛选,从而获得若干个备选模型,然后在模型验证阶段确定出最有效的模型。...Y的平均值的置信区间估计 Y的个别值的预测区间估计 需要注意,用回归模型进行预测时,模型中自变量的取值离均值越远则预测的结果就会越不可靠。...即进行预测时,X的取值不可以超过建模样本中X的值域,如果预测时X的值超过了建模样本中X的值域,那么预测出来的结果是不可靠的。

    2.2K10

    关于模型预测结果好坏的几个评价指标

    总第241篇/张俊红 在人工智能算法大数据时代,会有各种各样的预测模型,那怎么来评判一个预测模型的准确度呢?这一篇就来聊聊常用的一些评价指标。...所谓的预测准确度其实就是预测值和实际值之间的相近程度,预测值和实际值之间越接近,说明预测准确度越高。我们用y_{hat}表示模型的预测值,y表示模型的真实值。...2.RMSE RMSE表示均方根误差,是对MSE的开根号,有点类似方差与标准差的区别。人们对均方差和方差一样没有直观的理解,不知道均方差=100时到底是准确度高还是低。..., y_pre) RMSE直接对MSE的结果开根号即可,代码如下: import numpy as np rmse = np.sqrt(mse) MAE的计算在Sklearn中也有现成的函数可以调用...): return np.mean(np.abs((y_pred - y_true) / y_true)) * 100 mape = mape(y_true, y_pred) 以上就是关于模型准确度常用的评价指标以及

    10.6K20

    Machine Learning-模型结果的应用之道

    当你有了一个相当不错的模型结果了,这个时间就需要上线应用了,但实际上这个过程也是需要注意很多东西的呢,比如汇报你的项目结果、上线计划沟通、上线后的监控等等,都是相当重要的,Brownlee教授有一篇概括地挺全的文章...(图文无关,只为并茂) 永远要记得,建立模型只是为了解决业务问题,模型只是一个工具而已,所以,脱离具体业务场景的模型都是假的。...报告汇报式 一旦你发现了一个很不错的模型,并且训练的结果也很不错,你此时就需要总结这一切内容,并很好的展示给你的观众(可以是老板、客户或者是同事等),而此时如何完美地展示显得格外重要。...如果是自己平时做练习的项目,我觉得可以多按照上面的点来描述自己的项目结果,并且将报告上传到社区网络,让更多的人来评价,你从中也可以得到更多的反馈,这对你下一次的报告有很大的帮助。...3)模型效果追踪 增添一些基础设施来监控模型的性能,并且可以在精度低于最低水平的时候发出警报,追踪模型实时或者离线的数据样本的效果,包括入参。

    39420

    Loadrunner 运行场景-场景中的全局变量与关联结果参数

    结果:每个用户的全局变量的取值日志都一样,先输出 "value_for_int_var" = "1",然后输出"value_for_int_var" = "2" 结论:针对全局变量,针对场景中的每个用户...,全局变量的取值互不干扰,相当于说,每个用户都有一个自己的全局变量,变量名称,变量的初始值都一样,每个用户负责更新自己的全局变量的值。...Paramter List中的VuserID Action2 模拟把服务器返回结果当作下一步的输入来使用 Action2() { int vuserID; int result; lr_start_transaction...结论:场景中,每个并发用户负责自己的数据结果。...关联参数 基于A中的实验结果,关联参数的取值也是一样的,所以,并发场景下,也可以通过关联函数web_reg_save_param获取服务器的返回结果,并在下一个步骤中使用

    82910

    Interlocked.Increment 以原子操作的形式递增指定变量的值并存储结果

    Interlocked 类 为多个线程共享的变量提供原子操作。 使用 Interlocked 类,可以在不阻塞线程(lock、Monitor)的情况下,避免竞争条件。...Decrement() 以原子操作的形式递减指定变量的值并存储结果。 Exchange() 以原子操作的形式,设置为指定的值并返回原始值。...Increment() 以原子操作的形式递增指定变量的值并存储结果。 Add() 对两个数进行求和并用和替换第一个整数,上述操作作为一个原子操作完成。...Read() 返回一个以原子操作形式加载的值。 简单测试一下:简单的自增运算。...(int i = 0; i < 100_0000; i++) { //sum += 1; Interlocked.Increment(ref sumLock);//以原子操作的形式递增指定变量的值并存储结果

    2.1K20

    使用LSTM模型预测多特征变量的时间序列

    Hi,我是Johngo~ 今儿和大家聊聊关于「使用LSTM模型预测多特征变量的时间序列」的一个简单项目。 使用LSTM模型预测多特征变量的时间序列,能够帮助我们在各种实际应用中进行更准确的预测。...本项目使用Python和TensorFlow/Keras框架来实现一个LSTM模型,对多特征变量的时间序列数据进行预测。 实现流程 数据准备 收集和准备时间序列数据集。 处理缺失值和异常值。...数据预处理 创建输入特征和目标变量。 将数据分为训练集和测试集。 将数据重塑为适合LSTM模型的格式。 构建和训练LSTM模型 使用Keras构建LSTM模型。 编译模型并设置优化器和损失函数。...训练模型并进行验证。 模型评估和预测 评估模型的性能。 使用模型进行未来时间点的预测。 可视化预测结果和实际值。...plt.xlabel('Time') plt.ylabel('Value') plt.legend() plt.show() 总结 通过生成模拟数据集并保存为CSV文件,我们可以使用上述步骤完成基于LSTM的多特征变量时间序列预测模型的构建和训练

    1.1K10

    有关机器学习的数据处理,模型训练,模型保存,模型调用和结果预测 整体流程

    结果分析:分析模型输出,检查是否达到了预期的效果。...数据预测 数据预测是将模型应用于实际数据,获取预测结果。 准备数据:确保新数据的格式和训练数据一致。 生成预测:将新数据输入模型,获取预测结果。...模型训练:选择模型并进行训练。 模型评估:使用评估指标检查模型的表现。 模型保存:将训练好的模型保存到文件中。 使用模型:加载模型并对新数据进行预测。 数据预测:应用模型于实际数据,获取预测结果。...我们假设较高的聚类中心是“正常”,较低的聚类中心是“堵塞”。 可视化聚类结果: 使用 matplotlib 绘制数据点和聚类结果,聚类中心以红色 X 显示。...通过手动判断聚类中心,确保预测结果符合我们定义的语义。 最后,将模型保存为文件,方便后续加载并进行预测。

    57820

    预测三分类变量模型的ROC介绍

    我们对Logistics回归很熟悉,预测变量y为二分类变量,然后对预测结果进行评估,会用到2*2 Matrix,计算灵敏度、特异度等及ROC曲线,判断模型预测准确性。...答案:macro-average and micro-average 接下来,我们将介绍如何建立模型预测三分类变量,及对模型准确性进行评估。...1.模型构建 我们根据 iris数据集中的 Species三分类变量,建立多元回归模型,根据花的特征预测Species种类,其中我们添加xv新变量; 首先我们对 iris数据集进行拆分成 Training...,data=train) summary(fit1) fit1结果解读比二分类多一个分类。参照OR的解释。...但是需要分几个步骤进行: 我们原来的预测值输出是Species的分类结果,这部分我们需要输出对各种类别的概率值。

    1.1K20

    训练大模型缺少高质量数据?我们找到了一种新的解决方案

    数据,作为决定机器学习模型性能的三大要素之一,正在成为制约大模型发展的瓶颈。...彭博社基于开源的 GPT-3 框架打造金融大模型 BloombergGPT,证明了基于开源的大模型框架开发垂直行业大模型的可行性。...除了原始数据,加工、处理后的中间数据和结果数据也在相同的安全域中。...目前,对于那些希望在本地部署大模型的企业,例如金融、医疗等高敏感数据机构,苦于缺少在本地运行大模型的基础设施,包括训练大模型的高成本高性能硬件,以及部署大模型后续的运维经验。...而对于构建行业大模型的企业,他们则担心如果直接将模型交付给客户,模型本身和模型参数背后积累的行业数据和专业知识存在被二次贩卖的可能。

    1.3K30

    教程 | 如何为单变量模型选择最佳的回归函数

    可是由于模型不同,因此对模型的解释(平方、根等)也会不同,这不是个问题吗? 问题的第二部分很容易回答。首先,找到最适合数据的模型,然后解释其结果。如果你知道模型解释数据的方式会很有帮助。...本文的其余部分将解决前面提到问题的第一部分。请注意,我将分享我选择模型的方法。模型的选择有多种方式,可能会有其他不同的方法,但我描述的是最适合我的方式。 另外,这种方法只适用于单变量模型。...单变量模型只有一个输入变量。我会在之后的文章中描述如何用更多的输入变量评估多变量模型。然而,在今天这篇文章中我们只关注基础的单变量模型。...对单变量模型应用调整后的 R2 如果只使用一个输入变量,则调整后的 R2 值可以指出模型的执行情况。它说明了你的模型解释了多少(y 的)变化。...知道模型偏差很有帮助,通常人们都不会想要上述的模式。 残差的平均值应该为零,而且还应该是均匀分布的。使用三次多项式函数对相同的数据集进行预测可以获得更好的拟合结果: ?

    1.3K90

    LIME:我可以解释任何一个分类模型的预测结果

    主要贡献: 提出了一种技术手段,可以为任意的分类模型提供预测结果的解释。 背景: 在模型被用户使用前,用户都会十分关心模型是否真的值得信赖。...因此,我们需要能够对模型的预测进行解释,从而帮助我们来判断模型是否可靠。 何谓“解释一个预测结果”,作者的定义是:通过文本的或者视觉的方式来呈现样本的具体组成部分跟模型预测结果之间的关系。...选择一个天然可解释的简单模型 有一些模型天生就是可解释的,比如线性模型、决策树。我们就可以利用这些简单的可解释模型来帮助我们解释复杂模型的预测结果。 3....而第二个模型找到的特征是错误的,这是由于训练集中的偏差导致的。 对于图像分类问题,也是类似的: ? 上图的结果,是通过对g的正权重对应的区域进行高亮。从而可以解释为什么模型预测出了相应的类别。...上面的内容,都是只针对一个样本的预测结果进行解释。然而,要判断模型的可靠性,我们往往需要检查很多的样本,这就很费事了。

    1.7K30

    使用V函数,进行变量引用,得到想要的结果值 》

    1.做一个变量的引用: ${__counter(,)} 参考:${__counter(,)}函数的用法 循环次数为3次 用户定义的变量的名称 ${var_${__counter(,)}} 编写http...请求的名称 运行结果 我们期望它得到过程是:{var_1} {var_2} 期望的结果是:引用变量的值。...实际结果是: 要进行两次变量计算。这个方法是办不到,得不到我们想要的结果。...然后再使用$符号和大括号扩起来,进行了变量引用,这样才得到想要的结果值。 http请求:修改了名称和消息体数据 运行成功 3.注意 取样器在运行的时候,HTTP请求里的名称也会进行代码的运算。...就出现变量名称变成了:table_name_1代表第一个值,table_name_2代表第二个值........... ${变量名称} 得到变量的值。

    2K20

    模型的跨界:我拿Transformer去做目标检测,结果发现效果不错

    在训练期间,二分匹配(bipartite matching)向预测结果分配唯一的 ground truth 边界框。没有匹配的预测应生成一个「无目标」的分类预测结果。...论文链接:https://arxiv.org/pdf/2005.12872v1.pdf 为了方便大家复现 DETR 的结果,Facebook 还在 GitHub 上开源了该模型的代码和预训练模型。...Transformers 的自注意力机制使得 DETR 可以在图像以及预测的特定目标上执行全局推理。例如,该模型可以观察图像的其他区域以帮助确定边界框中的目标。...DETR 的新型架构有助于提升计算机视觉模型的可解释性,并且由于其基于注意力机制,所以当它做预测时,很容易就能观察到网络正在查看图像的哪部分区域。...之后为展示 DETR 的多功能与可扩展性,研究者提供了其在全景分割中的结果,在实验中保持 DETR 模型的权值不变,仅对一小部分扩展模块进行训练。

    1.3K20

    tf.profiler

    参数:errors:如果提供了一个列表,它将填充所有缺少的必需字段的字段路径。返回值:如果指定的消息已设置所有必需字段,则为True。...参数:errors:如果提供了一个列表,它将填充所有缺少的必需字段的字段路径。返回值:如果指定的消息已设置所有必需字段,则为True。...参数:errors:如果提供了一个列表,它将填充所有缺少的必需字段的字段路径。返回值:如果指定的消息已设置所有必需字段,则为True。...参数:errors:如果提供了一个列表,它将填充所有缺少的必需字段的字段路径。返回:如果指定的消息已设置所有必需字段,则为True。...参数通常是指张量流变量的权重。它反映了模型的“能力”。参数:min_params:只显示包含不少于这个数量的参数的分析器节点。

    4.4K30
    领券