文章目录 list转数据框(Dataframe) pandas读取无头csv 重新采样 pandas 读取 excel list转数据框(Dataframe) # -*- coding:utf-8 -*...- # /usr/bin/python # 字典转数据框(Dataframe) from pandas.core.frame import DataFrame a=[1,2,3,4]#列表a b=[...将包含不同子列表的列表转换为数据框 a=[[1,2,3,4],[5,6,7,8]]#包含两个不同的子列表[1,2,3,4]和[5,6,7,8] data=DataFrame(a)#这时候是以行为标准写入的 print(data) pandas...读取无头csv import pandas as pd df = pd.read_csv('allnodes.csv',header = None)#因为没有表头,不把第一行作为每一列的索引 data
在本文中,我们将深入研究Pandas中重新采样的关键问题。 为什么重采样很重要? 时间序列数据到达时通常带有可能与所需的分析间隔不匹配的时间戳。...重采样分类 重采样主要有两种类型: 1、Upsampling 上采样可以增加数据的频率或粒度。这意味着将数据转换成更小的时间间隔。 2、Downsampling 下采样包括减少数据的频率或粒度。...在为模型训练准备时间序列数据时,重采样是必不可少的。 重采样过程 重采样过程通常包括以下步骤: 首先选择要重新采样的时间序列数据。该数据可以采用各种格式,包括数值、文本或分类数据。...评估重采样的数据,以确保它符合分析目标。检查数据的一致性、完整性和准确性。 Pandas中的resample()方法 resample可以同时操作Pandas Series和DataFrame对象。...重采样是时间序列数据处理中的一个关键操作,通过进行重采样可以更好地理解数据的趋势和模式。 在Python中,可以使用Pandas库的resample()方法来执行时间序列的重采样。 作者:JI
详见1· Bootstrap(自助法)指在训练集里有放回的重采样等长的数据形成新的数据集并计算相关参数,重复n次得到对参数的估计,计算标准误。...Bootstrap会受到样本量和采样次数的影响· 参数bootstrap Vs.
前言: 大家晚上好,今天给大家分享FFmpeg里面的重采样实践,话不多说,直接开始! 一、重采样: 1、什么是重采样?...通俗的讲,重采样就是改变音频的采样率、sample format(采样格式)、声道数(channel)等参数,使之按照我们期望的参数输出。 2、为什么需要重采样?...那么为什么需要重采样呢?...3、重采样参数解析: sample rate(采样率):采样设备每秒抽取样本的次数 sample format(采样格式)和量化精度:这个应该好理解,就是采用什么格式进行采集数据;每种⾳频格式有不同的量化精度...在转换结束时,可以通过调⽤具有NULL in和in incount的 swr_convert()来刷新重采样缓冲区。
如果DataFrame结构的索引是日期时间数据,或者包含日期时间数据列,可以使用resample()方法进行重采样,实现按时间段查看员工业绩的功能。...convention='start', kind=None, loffset=None, limit=None, base=0, on=None, level=None) 其中,参数rule用来指定重采样的时间间隔...,例如'7D'表示每7天采样一次;参数how用来指定如何处理两个采样时间之间的数据,不过该参数很快会被丢弃不用了;参数label = 'left'表示使用采样周期的起始时间作为结果DataFrame的index...,label='right'表示使用采样周期的结束时间作为结果DataFrame的index。
一.初始化音频重采样器 在音频重采样时,用到的核心结构是SwrContext,我们可以通过swr_alloc()获取swr_ctx实例,然后通过av_opt_set_int()函数和av_opt_set_sample_fmt...()函数来设置音频重采样的参数,最后通过swr_init()函数初始化SwrContext实例即可。... 音频重采样用到的核心函数是swr_convert(),不过在进行重采样的时候,需要注意每次要去判断目标采样点个数是否大于最大目标采样点个数,如果大于,需要重新给输出缓冲区分配内存空间。...<<endl; return -1; } } return 0; } 三.将重采样后的数据写入输出文件 在初始化重采样器的时候,我们设置了目标采样格式为...write_packed_data_to_file(uint8_t *data,int32_t size){ fwrite(data,1,size,output_file); } 四.销毁音频重采样器
重采样及频率转换 重采样(resampling)指的是将时间序列从一个频率转换到另一个频率的处理过程。是对原样本重新处理的一个方法,是一个对常规时间序列数据重新采样和频率转换的便捷的方法。...rule : DateOffset, Timedelta or str 表示重采样频率,例如‘M’、‘5min’,Second(15) how : str 用于产生聚合值的函数名或数组函数,例如'mean...: {'start', 'end', 's', 'e'}, default 'start' 当重采样时期时,将低频率转换到高频率所采用的约定('start'或'end')。...-07 0.140673 2000-04-08 -1.234146 2000-04-09 -0.835341 Freq: D, Length: 100, dtype: float64 pandas...时间戳 重采样 In frame = pd.DataFrame(np.random.randn(2, 4), index=pd.date_range('1/
重参数化(Reparameterization)技巧是一种在机器学习和统计学中常用的技术,主要用于将一个随机变量转换成另一个随机变量,同时保证它们的概率分布保持不变,在生成模型中有着重要应用。...简介 重参数化技巧,就是从一个分布 p_{\theta}(z) 中进行采样,而该分布是带有参数 {\theta} 的,如果直接进行采样(采样动作是离散的,其不可微),是没有梯度信息的,那么在BP反向传播的时候就不会对参数梯度进行更新...重参数化技巧可以保证我们从 p_{\theta}(z) 进行采样,同时又能保留梯度信息。...连续分布采样 我们考虑以下形式: J_{\theta}=\int p_{\theta}(z) f(z) d z 其中 。这样就解决了采样导致梯度不可传递的问题。
swr_convert(struct SwrContext *s, uint8_t **out, int out_count, const uint8_t **in , int in_count); //音频重采样转换...这里填入frame->data即可 //in_count :输入缓冲区每通道数据数量,这里填入frame->nb_samples即可 //返回值:转换成功后每个通道的输出样本数,出错则为负值 音频解码并重采样示例...输出 (const uint8_t**)frame->data,frame->nb_samples ); //输入 //将重采样后的
一、概述 现有一个excel文件examples.xlsx,内容如下: 合并去重后,效果如下: 那么需求如下: 公司去重,保留一个 多个地区合并为一行,用逗号隔开 收入进行累计计算 最后将统计结果,.../usr/bin/python3 # -*- coding: utf-8 -*- import pandas as pd def computer(x): # 数据计算 return pd.Series...({ # 去重 '公司': ','.join(x['公司'].unique()), '地区': ','.join(list(set
FFMPEG 音频重采样流程 III . FFMPEG 音频重采样 IV . FFMPEG 初始化音频重采样上下文 SwrContext V . FFMPEG 计算音频延迟样本数 VI ....FFMPEG 计算音频重采样输出样本个数 VII . FFMPEG 输出样本缓冲区初始化 VIII . FFMPEG 音频重采样 IX . FFMPEG 音频重采样输出的重采样数据字节数计算 X ....初始化音频重采样上下文 : 音频重采样需要先初始化 音频重采样上下文 SwrContext , 首先要调用 swr_alloc_set_opts ( ) 初始化内存 并 设置 SwrContext 参数...FFMPEG 输出样本缓冲区初始化 ---- 音频重采样后 , 需要初始化一段内存 , 用于保存重采样后的样本数据 ; 为其分配内存 , 并初始化内存数据 ; /** * 存放重采样后的数据缓冲区 ,...FFMPEG 音频重采样输出的重采样数据字节数计算 ---- 1 .
今日分享: 后台回复“批量”可以获取批量重采样、批量掩膜、批量坡度提取和批量分区统计的代码,不过你们懂得。 01 主要内容 ?...1.以30m空间分辨率的DEM数据为基础数据,重采样为40、50、60、70、80、90、100、110、120 m共10组不同分辨率的DEM。 2....使用ArcPy进行处理 1.1 将五景DEM数据镶嵌起来然后利用ArcPy进行批量重采样,具体代码如下所示: import arcpy in_raster = r"C:\Users\Admin\Desktop...1.2 将重采样得到10组不同分辨率的DEM,利用行政区的矢量边界,编写Python代码进行批量剪裁,具体代码如下所示: import arcpy,os,glob from arcpy import env...后台回复“批量”可以获取批量重采样、批量掩膜、坡度批量提取和批量分区统计的代码,emmmmmm,不过你们懂得== 作者|不许人间见白头 排版|Moon 校阅|数读菌、不许人间见白头
音频重采样 FFmpeg解码得到的音频帧的格式未必能被SDL支持,在这种情况下,需要进行音频重采样,即将音频帧格式转换为SDL支持的音频格式,否则是无法正常播放的。...音频重采样涉及两个步骤: 1) 打开音频设备时进行的准备工作:确定SDL支持的音频格式,作为后期音频重采样的目标格式 2) 音频播放线程中,取出音频帧后,若有需要(音频帧格式与SDL支持音频格式不匹配...)则进行重采样,否则直接输出 6.1 打开音频设备 音频设备的打开实际是在解复用线程中实现的。..._t **)af->frame->extended_data; // 重采样输出参数1:输出音频缓冲区尺寸 // 重采样输出参数2:输出音频缓冲区 uint8...is->audio_buf1) return AVERROR(ENOMEM); // 音频重采样:返回值是重采样后得到的音频数据中单个声道的样本数
Google Earth Engine(插值与重采样) 本期我们讲一下如何利用GEE对矢量的点进行插值。...还有就是如何把低空间分辨率的影像进行重采样 克里金插值 克里金插值是我们常用的插值方法,在GEE中为kriging,类似的还有反距离权重插值(inverseDistance) 主要函数:kriging...我们在进行不同分辨率的影像计算时,一般都需要进行重采样。...GEE默认的重采样方法为最近邻的方法。但是,这样采样出来的效果不好,会出现网格的效应,就像之前我们计算地表蒸散的那样子(地表蒸散发计算)。...本次我们讲了如何运用GEE进行插值和重采样。下次我们应该会讲用NDWI提取水体。
采样速率是ADC重要参数之一,围绕采样速率,有一条著名的定理:奈奎斯特采样定理。...采样定理: 只要采样频率大于或等于有效信号最高频率的两倍,采样值就可以包含原始信号的所有信息,被采样的信号就可以不失真地还原成原始信号。...为方便介绍,我们统称之为采样定理。 在详细介绍采样定理之前,我们一定要知道一个非常有趣的频率现象:‘任何模拟信号,在离散化后,在频率上都会按照采样率周期性延拓。’...而这里面就隐含着著名的采样定理。 同样的,我们从时域和频域分别看下采样定理的理解。...采样定理与过采样率 上文中的fa是信号的带限(信号的最大频率范围),2*fa是采样定理的基本要求;M*2*fa中,M就是过采样率,过采样率是对‘采样定理的最低采样频率’而言的。
本文介绍基于Python中ArcPy模块,对大量栅格遥感影像文件进行批量掩膜与批量重采样的操作。 首先,我们来明确一下本文的具体需求。...我们希望,依据一个已知的面要素矢量图层文件,对上述文件夹中的全部.tif格式遥感影像进行掩膜,并对掩膜后的遥感影像文件再分别加以批量重采样,使得其空间分辨率为1000 m。 ...对全部图像文件完成掩膜操作后,我们继续进行重采样操作。...和前述代码思路类似,我们依然还是先遍历文件,并在其原有文件名后添加"_Re.tif"后缀,作为新文件的文件名;随后,利用Resample_management()函数进行重采样。...其中,1000表示重采样的空间分辨率,在这里单位为米;"BILINEAR"表示用双线性插值的方法完成重采样。
enable-libx264 --extra-cflags="-I/usr/local/include" --extra-ldflags="-LIBPATH:/usr/local/lib/" 原来实现重采样的代码...dst_bufsize = av_samples_get_buffer_size(&dst_linesize, dst_nb_channels, len_swr, outSamplefmt, 1); 这一个函数是用于计算重采样完成之后实际得到的数据的字节大小
本文主要介绍的内容是一种基于ArcGIS ModelBuilder输出不同像元大小的批量重采样方法 刚开始我的思路是使用For循环然后加重采样工具进行输出,结果输出的图像都是一个像元大小的(以下模型为错误演示...) 后来经过思考发现,重采样工具的输出像元大小数据类型为“像元大小xy”,而For循环输出的数据类型为值 所以只要再在这个模型里面添加一个“计算值”工具就可以吧for循环输出的值转化为“像元大小xy
详细推导过程在公众号后台回复:过采样 下面就是经典的ADC SNR计算公式。...Fs/(2*BW)就是过采样率。...我们所说的过采样率每提高4倍,可以提高ADC 1bit的有效分辨率就是根据上面的公式来的,过采样率可以参考以前文章: 过采样系列一:采样定理与过采样率 为什么“过采样率每提高4倍,可以提高ADC 1bit...举个栗子: 当过采样率OSR为1时, 当过采样率OSR为4时, 对比公式1和公式2,只有红色框部分不同,即过采样带来的SNR收益和增加分辨率N是可以转化等效的。...那么是不是只要提高采样速率就可以提高分辨率了呢? 其实不对,从公式2可以看出,10log(4)变为10log(1)了,这个过程还需要降低采样,或者下抽,这么做除了降低数据量外,就是可以提高分辨率。
本文主要介绍的内容是一种基于ArcGIS ModelBuilder输出不同像元大小的批量重采样方法 刚开始我的思路是使用For循环然后加重采样工具进行输出,结果输出的图像都是一个像元大小的(以下模型为错误演示...后来经过思考发现,重采样工具的输出像元大小数据类型为“像元大小xy”,而For循环输出的数据类型为值 ? ?
领取专属 10元无门槛券
手把手带您无忧上云