http://pandas.pydata.org/pandas-docs/version/0.19.2/ 下面我们先聊一下NumPy,它内置了进行数据分析时,所要执行的大量基础任务所需的函数。...比如一个数据结构由四个人的姓名(name)、年龄(age)、BMI、是否健康(healthy?)构成(其中还含有非数字NaN条目)。你可以把数据框架看做Excel表格。 ?...#'name'、'age'等这样的名字为key(键),Series是Python序列:里面为对应的值,index为目标索引组 #对于非数值组NaN,空出来就好,在索引组也空出来就好。...4 我们可以调用适用的数据框架向我们提供的参数总和和任意函数。...由于我水平有限,所以接下来几天给大家转几篇大神写的关于Pandas和NumPy的很好的文章,大家可以一起学习一下哈!最后感谢大家的阅读。
这就很奇怪了,2012、2013、2014、2015四个年份的第一季度加总,这是什么鬼?其实我更想看横向加总,就是每一年四个季度加总,得到一年的总和,原来,指定axis=1即可: ?...特别注意的是缺失值的情况! 如果有缺失值,比如四个数值2,3,1,NaN,那么加总的结果是2+3+1+NaN=6,也就是缺失值自动排除掉了!...这点特别注意,因为这可能会导致你的数据不必苛,比如某一年少一个季度的值,那么这一年其实就是三个季度的加总,跟其他年份四个季度怎么比?...一些函数记录在此(参考书本《利用Python进行数据分析》): 方法 描述 count() 非NA值的数量 describe() 各列的汇总统计 min()、max() 最小、最大值 argmin()、...也可以单独只计算两列的系数,比如计算S1与S3的相关系数: ? 二、缺失值处理 Pandas和Numpy采用NaN来表示缺失数据, ? 1.
Pandas提供了高性能、易于使用的数据结构和数据分析工具,可以处理各种类型的数据,包括时间序列数据、结构化数据和非结构化数据。...import pandas as pd import numpy as np # 创建一个包含缺失值和重复项的DataFrame data = {'A': [1, 2, np.nan], 'B': [...4, np.nan, 4]} df_with_issues = pd.DataFrame(data) # 清洗数据:填充缺失值,删除重复项 df_clean = df_with_issues.fillna...(0).drop_duplicates() # 查看清洗后的数据 print(df_clean) 上面的例子中,首先创建了一个包含缺失值(np.nan)和重复项的DataFrame。...我们指定了kind='scatter'来告诉Pandas我们想要绘制的是散点图,并通过x和y参数指定了对应的列。最后,使用plt.show()显示图表。
如果使用int,数值表示计算统计量的观测值的数量即向前几个数据。如果是offset类型,表示时间窗口的大小min_periods:每个窗口内最少包含的观测值的数量,如果小于这个值的窗口,则结果为NA。...下面汇总了常用的统计相关函数:方法 描述 count() 统计非空数量 sum() 求和 mean() 求均值 median()...2、3、4;均值为( 2 + 3 + 4) / 3 = 3以此类推…图片如果是移动之后求和,也是同样的道理:图片图片在这里需要注意的是:pandas或者numpy中的np.nan空值与其他数值相乘或者相加都是...:(0+1+2)/3=1第四个元素3:往前最多也是4个元素,为0、1、2、3,计算均值:(0+1+2+3)/4=1.5以此类推...取值4:neither如果直接使用neither,结果全部为NaN:图片解决...所以我们需要手动将min_periods设置成: n-1图片具体的解释参考下面的图示:第一个元素0:排除第一个和最后一个元素后,均为NaN,均值为NaN第二个元素1:排除第一个和最后一个元素后,为NaN
数据操作 在数据操作方面,Pandas提供了丰富的功能,包括数据选择和索引、数据切片和过滤、数据缺失值处理、数据排序和排名等。...(案例8:处理缺失值) import pandas as pd import numpy as np data = {'Name': ['Alice', np.nan, 'Charlie'],...数据透视表中的每个单元格表示对应姓名和年份的销售额和利润的总和。...# 查看数据的基本信息 print(df.info()) 使用info方法打印出数据的基本信息,包括列名称、数据类型以及非空值的数量等。...最后,使用groupby方法按照月份对数据进行分组,然后使用sum方法计算每个月的总销售额和利润,并将结果存储在monthly_sales_profit中。
Pandas 图鉴系列文章由四个部分组成: Part 1. Motivation:Pandas图鉴(一):Pandas vs Numpy Part 2....大多数Pandas函数都会忽略缺失的值: 更高级的函数(median, rank, quantile等)也是如此。 算术操作是根据索引来调整的: 在索引中存在非唯一值的情况下,其结果是不一致的。...不要对具有非唯一索引的系列使用算术运算。 比较 对有缺失值的数组进行比较可能很棘手。...下面是插入数值的一种方式和删除数值的两种方式: 第二种删除值的方法(通过删除)比较慢,而且在索引中存在非唯一值的情况下可能会导致复杂的错误。...对于每一组,要求提供元素的总和,元素的数量,以及每一组的平均值。 除了这些集合功能,还可以根据特定元素在组内的位置或相对价值来访问它们。
() 返回前n行 8 tail() 返回最后n行 axes示例: import pandas as pd import numpy as np #Create a series with 100 random...8 values NDFrame的Numpy表示 9 head() 返回开头前n行 10 tail() 返回最后n行 sum(),mean()等聚合函数的应用 先创建个一个数据帧,然后在此基础上进行演示...2 sum() 所有值之和 3 mean() 所有值的平均值 4 median() 所有值的中位数 5 mode() 值的模值 6 std() 值的标准偏差 7 min() 所有值中的最小值 8 max...() 所有值中的最大值 9 abs() 绝对值 10 prod() 数组元素的乘积 11 cumsum() 累计总和 12 cumprod() 累计乘积 注 - 由于DataFrame是异构数据结构。...那么,如果想要都包含的话,该怎么操作: object - 汇总字符串列 number - 汇总数字列 all - 将所有列汇总在一起(不应将其作为列表值传递) 包含字符串列 import pandas
在标记方法中,标记值可能是某些特定于数据的惯例,例如例如使用-9999或某些少见的位组合来表示缺失整数值,或者它可能是更全局的惯例,例如使用NaN(非数字)表示缺失浮点值,这是一个特殊值,它是 IEEE...Pandas 中的缺失数据 Pandas 处理缺失值的方式受到其对 NumPy 包的依赖性的限制,NumPy 包没有非浮点数据类型的 NA 值的内置概念。...NaN:缺失的数值数据 另一个缺失的数据表示,NaN(“非数字”的首字母缩写)是不同的;它是所有系统都识别的特殊浮点值,使用标准 IEEE 浮点表示: vals2 = np.array([1, np.nan...空值上的操作 正如我们所看到的,Pandas 将None和NaN视为基本可互换的,用于指示缺失值或空值。为了促进这个惯例,有几种有用的方法可用于检测,删除和替换 Pandas 数据结构中的空值。...参数允许你为要保留的行/列指定最小数量的非空值: df.dropna(axis='rows', thresh=3) 0 1 2 3 1 2.0 3.0 5 NaN 这里删除了第一行和最后一行,因为它们只包含两个非空值
③ 选择第一行的第三个元素;在括号内,索引由逗号分隔。 ④ 选择第二列。 ⑤ 计算所有值的总和。 ⑥ 沿第一个轴计算总和,即按列计算。 ⑦ 沿第二轴计算总和,即按行计算。...这也可以被视为pandas的一项重要优势。例如,假设我们的四个列中的九个数据条目对应于从 2019 年 1 月开始的每月末数据。...pandas相当容错,以捕获错误并在相应的数学运算失败时仅放置NaN值。不仅如此,正如之前简要展示的那样,您还可以在许多情况下像处理完整数据集一样处理这些不完整数据集。...② 具有相同随机数的DataFrame对象。 ③ 通过head()方法获得前五行。 ④ 通过tail()方法获得最后五行。 下面的代码说明了 Python 的比较运算符和逻辑运算符在两列值上的应用。...最后,更多基于 eval() 和 apply() 方法的选项。
对Pandas中常用的描述性函数做一下记录: 拿一个DataFrame: import pandas as pd import numpy as np #Create a Dictionary of...df.count() ''' Name 12 Age 12 Rating 12 dtype: int64 ''' sum()所有值的和,可以看到字符串被串联起来了 df.sum...可以看到字符串不能算平均值,跳过了 df.mean() ''' Age 31.833333 Rating 3.743333 dtype: float64 ''' median()所有值的中位数...4.10 9 Steve NaN 4.23 10 Tom NaN 4.60 11 Vin NaN 4.80 ''' std() 值的标准差 df.std() ''' Age...9.232682 Rating 0.661628 dtype: float64 ''' min() 所有值的最小值 df.min() ''' Name Andres Age
Pandas的pivot_table函数是一个强大的数据分析工具,可以帮助我们快速地对数据进行汇总和重塑。 本文将详细介绍pivot_table的用法及其在数据分析中的应用。...values: 需要聚合的列 index: 行索引 columns: 列索引 aggfunc: 聚合函数,默认为mean fill_value: 填充缺失值 margins: 是否添加汇总行/列 dropna...: 是否删除全为NaN的列 2....基本用法示例 让我们通过一个简单的例子来了解pivot_table的基本用法: import pandas as pd import numpy as np # 创建示例数据 df = pd.DataFrame...总结 Pandas的pivot_table函数是一个强大的数据分析工具,它可以帮助我们快速地对数据进行汇总和重塑。
NaN(非数字的首字母缩写)是一个特殊的浮点值,所有使用标准IEEE浮点表示的系统都可以识别它 pandas将NaN看作是可互换的,用于指示缺失值或空值。...要检查panda DataFrame中的空值,我们使用isnull()或notnull()方法。方法返回布尔值的数据名,对于NaN值为真。...我们可以使用fillna()来填充缺失的值。例如,我们可能想用0替换' NaN '。...注意:使用len的时候需要假设数据中没有NaN值。 description()用于查看一些基本的统计细节,如数据名称或一系列数值的百分比、平均值、标准值等。...类似地,我们可以使用df.min()来查找每一行或每列的最小值。 其他有用的统计功能: sum():返回所请求的轴的值的总和。默认情况下,axis是索引(axis=0)。
1、从“头”到“脚” 查看第一行或最后五行。默认值为5,也可以自定义参数。 ? 2、查看特定列的数据 ? 3、查看所有列的名字 ? 4、查看信息 查看DataFrame的数据属性总结: ?...四、统计功能 1、描述性统计 描述性统计,总结数据集分布的集中趋势,分散程度和正态分布程度,不包括NaN值: ? 描述性统计总结: ?...五、数据计算 1、计算某一特定列的值 输出结果是一个系列。称为单列数据透视表: ? 2、计数 统计每列或每行的非NA单元格的数量: ? 3、求和 按行或列求和数据: ? 为每行添加总列: ?...4、将总列添加到已存在的数据集 ? 5、特定列的总和,使用loc函数 ? 或者,我们可以用以下方法: ? 6、用drop函数删除行 ? 7、计算每列的总和 ?...NaN; inner——仅显示两个共享列重叠的数据。
数据量大的情况下,有些字段存在空值 NaN 的可能,这时就需要使用 Pandas 中的 isnull 函数进行查找。...Pandas 和 NumPy 一样,都有常用的统计函数,如果遇到空值 NaN,会自动排除。...min() 最小值 6 max() 最大值 7 sum() 总和 8 mean() 平均值 9 median() 中位数 10 var...0 0.0 2.0 0.0 0 4 1 3.0 4.0 0.0 1 5 2 0.0 0.0 0.0 5 6 3 0.0 3.0 0.0 4 我们还可以向前或向后传播非空值。...Pandas 包与 NumPy 工具库配合使用可以发挥巨大的威力,正是有了 Pandas 工具,Python 做数据挖掘才具有优势。 最后,祝有所学习,有所成长
数据量大的情况下,有些字段存在空值 NaN 的可能,这时就需要使用 Pandas 中的 isnull 函数进行查找。...Pandas 和 NumPy 一样,都有常用的统计函数,如果遇到空值 NaN,会自动排除。...最小值 max() 最大值 sum() 总和 mean() 平均值 median() 中位数 var() 方差 std()...0 1 3.0 4.0 0.0 1 2 0.0 0.0 0.0 5 3 0.0 3.0 0.0 4 我们还可以向前或向后传播非空值。...==1)].count()) pandas.Series.map 根据输入的对应关系映射系列的值。
也许最常见的汇总统计数据是均值和标准差,它允许你汇总数据集中的“典型”值,但其他汇总也很有用(总和,乘积,中位数,最小值和最大值,分位数等)。...NumPy 具有内置的快速的聚合函数,可用于处理数组;我们将在这里讨论和演示其中的一些内容。 对数组中的值求和 作为一个简单的例子,考虑计算数组中所有值的总和。...]) 该函数返回四个值,对应于四列数字。...此外,大多数聚合都有一个NaN安全的替代品来计算结果,同时忽略缺失值,缺失值由特殊的 IEEE 浮点NaN值标记(对于缺失数据的更全面讨论,请参阅“处理缺失数据)。...我们将在第三章中更全面地探索 Pandas。
Pandas最初被作为金融数据分析工具而开发出来,因此,pandas为时间序列分析提供了很好的支持。...panel data是经济学中关于多维数据集的一个术语,在Pandas中也提供了panel的数据类型。...NaN NaN NaN #row3 NaN 8.0 9.0 10.0 #汇总和计算描述统计 #常用的数学和统计方法 #相关系数与协方差 #唯一值、值计数以及成员资格 #count...非NA值的数量 #describe方法针对Series或各DataFrame列计算总统计 #min/max 计算最小值、最大值 #argmin、argmax 计算能够获取到最小值和最大值的索引位置(整数...) #idxmin、idxmax 计算能够获取到最小值和最大值的索引值 #quantile 计算样本的分位数(0到1) #sum 值的总和 #mean 值的平均数 #median 值的算术中位数(50%
Pandas,让数据处理更easy系列5) 善于处理missing data,如NaN, non-floating数据(玩转Pandas,让数据处理更easy系列5) 强大而灵活的分组功能,在数据集上实现分...分和合按照字面理解就可,但是“治”又是怎么理解,进一步将治分为3件事: 聚合操作,比如统计每组的个数,总和,平均值 转换操作,对每个组进行标准化,依据其他组队个别组的NaN值填充 过滤操作,忽略一些组...如果我们想看下每组的第一行,可以调用 first(),可以看到是每个分组的第一个,last()显示每组的最后一个: agroup.first() ?...06 治:分组上的操作 对分组上的操作,最直接的是使用aggregate操作,如下,求出每个分组上对应列的总和,大家可以根据上面的分组情况,对应验证: agroup = df.groupby('A')...如果根据两个字段的组合进行分组,如下所示,为对应分组的总和, abgroup = df.groupby(['A','B']) abgroup.aggregate(np.sum) ?
领取专属 10元无门槛券
手把手带您无忧上云