上一次学习了一个拆分的方法, 2019-09-14文章 Python pandas依列拆分为多个Excel文件 还是用循环数据的方法来进行逐行判断并进行组合,再拆分。...import pandas as pd data=pd.DataFrame(pd.read_excel('汇总.xlsx',header=1)) #读取Excel数据并转化为DataFrame,跳过第一行...,以第二行的数据的列名 bj_list=list(data['班别'].drop_duplicates()) #把“班别”一列进行删除重复项并存入到列表中 for i in bj_list: tempdata
中的一列字符串进行通函数操作,而且自带正则表达式的大部分接口 丰富的时间序列向量化处理接口 常用的数据分析与统计功能,包括基本统计量、分组统计分析等 集成matplotlib的常用可视化接口,无论是series...自然毫无悬念 dataframe:无法访问单个元素,只能返回一列、多列或多行:单值或多值(多个列名组成的列表)访问时按列进行查询,单值访问不存在列名歧义时还可直接用属性符号" ....字符串向量化,即对于数据类型为字符串格式的一列执行向量化的字符串操作,本质上是调用series.str属性的系列接口,完成相应的字符串操作。...尤为强大的是,除了常用的字符串操作方法,str属性接口中还集成了正则表达式的大部分功能,这使得pandas在处理字符串列时,兼具高效和强力。例如如下代码可用于统计每个句子中单词的个数 ?...时间类型向量化操作,如字符串一样,在pandas中另一个得到"优待"的数据类型是时间类型,正如字符串列可用str属性调用字符串接口一样,时间类型列可用dt属性调用相应接口,这在处理时间类型时会十分有效。
新增列 df['NewColumn'] = values 使用方式: 新增一列,并为其赋值。 示例: 新增一列表示年龄是否大于30。...分组统计 df.groupby('ColumnName').agg({'Column1': 'mean', 'Column2': 'sum'}) 使用方式: 按照指定列进行分组,然后进行聚合统计。...示例: 按状态分组,计算平均年龄和总工资。 df.groupby('Status').agg({'Age': 'mean', 'Salary': 'sum'}) 19....字符串处理 df['StringColumn'].str.method() 使用方式: 对字符串列进行各种处理,如切片、替换等。 示例: 将“Name”列转换为大写。...日期时间处理 df['DateTimeColumn'] = pd.to_datetime(df['DateTimeColumn']) 重点说明: 将字符串列转换为日期时间类型。
50个超强的Pandas操作 1....新增列 df['NewColumn'] = values 使用方式: 新增一列,并为其赋值。 示例: 新增一列表示年龄是否大于30。...示例: 按状态分组,计算平均年龄和总工资。 df.groupby('Status').agg({'Age': 'mean', 'Salary': 'sum'}) 19....字符串处理 df['StringColumn'].str.method() 使用方式: 对字符串列进行各种处理,如切片、替换等。 示例: 将“Name”列转换为大写。...日期时间处理 df['DateTimeColumn'] = pd.to_datetime(df['DateTimeColumn']) 使用方式:将字符串列转换为日期时间类型 示例: 将“Date”列转换为日期时间类型
参数: ①分组键是列名: 单个列名直接写(按一列进行分组),多个列名以列表的形式传入(这就是按多列进行分 组)。...""" (1)按一列进行分组 import pandas as pd df = pd.DataFrame([[99,"A类","一线城市","是",6,20,0],...按多列进行分组,只要将多个列名以列表的形式传给 groupby() 即可。...df.groupby(["客户分类","区域"]).sum() #只会对数据类型为数值(int,float)的列才会进行运算 无论分组键是一列还是多列,只要直接在分组后的数据进行汇总运算,就是对所有可以计算的列进行计算...) #对分组后数据进行求和运算 df.groupby(df["客户分类"]).sum() #只会对数据类型为数值(int,float)的列才会进行运算 (2)按照多个Series进行分组 #以 客户分类
pandas已经为我们自动检测了数据类型,其中包括83列数值型数据和78列对象型数据。对象型数据列用于字符串或包含混合数据类型的列。...Dataframe对象的内部表示 在底层,pandas会按照数据类型将列分组形成数据块(blocks)。...每种数据类型在pandas.core.internals模块中都有一个特定的类。pandas使用ObjectBlock类来表示包含字符串列的数据块,用FloatBlock类来表示包含浮点型列的数据块。...pandas中的许多数据类型具有多个子类型,它们可以使用较少的字节去表示不同数据,比如,float型就有float16、float32和float64这些子类型。...总结 我们学习了pandas如何存储不同的数据类型,并利用学到的知识将我们的pandas dataframe的内存用量降低了近90%,仅仅只用了一点简单的技巧: 将数值型列降级到更高效的类型 将字符串列转换为类别类型
标签:pandas 本文研讨将字符串转换为数字的两个pandas内置方法,以及当这两种方法单独不起作用时,如何处理一些特殊情况。 运行以下代码以创建示例数据框架。...每列都包含文本/字符串,我们将使用不同的技术将它们转换为数字。我们使用列表解析创建多个字符串列表,然后将它们放入数据框架中。...记住,数据框架中的所有值都是字符串数据类型。 图1 df.astype()方法 这可能是最简单的方法。我们可以获取一列字符串,然后强制数据类型为数字(即整数或浮点数)。...我们可以使用df.str访问整个字符串列,然后使用.str.replace()方法替换特殊字符。....’,‘’, n=1) 上面的n=1参数意味着我们只替换“.”的第一个匹配项(从字符串开始)。默认情况下,n设置为-1,这将替换所有引用。
a_name','bname']] ,里面需要是一个 list 不然会报错增加一列df['new']=list([...])对某一列除以他的最大值df['a']/df['a'].max()排序某一列df.sorted_values...列的值大于 3000 , group 列显示 hight , 否则显示 low df['group'] = np.where(df['pr'] > 3000, 'hight', 'low') 对复合多个条件的数据进行分级标记...loc函数按标签值进行提取iloc按位置进行提取ix可以同时按标签和位置进行提取 具体的使用见下: df.loc[3]按索引提取单行的数值df.iloc[0:5]按索引提取区域行数据值df.reset_index...df.groupby(‘city’).count()按 city 列分组后进行数据汇总df.groupby(‘city’)[‘id’].count()按 city 进行分组,然后汇总 id 列的数据df.groupby...,1 为正相关,0 为不相关 数据表的相关性分析 df.corr() 数据分组与聚合实践 import pandas as pd df = pd.DataFrame({'Country': ['China
Pandas库提供了强大的groupby和agg功能,使得我们能够轻松地对数据进行分组和聚合计算。...基础概念 groupby 方法 groupby是Pandas中最常用的分组工具之一。它允许我们将DataFrame按照一个或多个列进行分组,从而可以对每个分组执行各种聚合操作。...agg 方法 agg(aggregate的缩写)用于对分组后的数据进行聚合计算。它可以接受多种类型的参数,如字符串表示的函数名、自定义函数、字典等。...多个聚合函数 有时我们需要对同一列应用多个聚合函数。agg允许我们通过传递一个包含多个函数的列表来实现这一点。这样可以一次性获取多个聚合结果,而不需要多次调用agg。...sum', 'mean']) print("\n对同一列应用多个聚合函数:") print(multi_func_agg_result) 总结 通过对Pandas groupby和agg的学习,我们可以更好地理解和运用这一强大工具来满足各种数据分析需求
Name: Name, dtype: object:输出结果中显示了 Series 的名称和数据类型(这里是字符串 object)。...代码示例:按城市分组并计算平均年龄 # 示例数据 data = { 'Name': ['Alice', 'Bob', 'Charlie', 'David', 'Eva'], 'Age':...grouped_df = df.groupby('City')['Age'].mean() print("按城市分组后的平均年龄:\n", grouped_df) 详细解释 df.groupby(‘...City’)[‘Age’].mean():按 City 列分组,然后计算每个组中 Age 列的平均值。...groupby 是 pandas 中的一个强大函数,常用于分组统计。
按team列分组,team列中值相同的记录构成一组,但是不做聚合计算或其他操作,看不到分组结果。...,可以是字符串、字符串列表、字典或者 Series、Numpy 数组或函数 axis:指定分组方向是按行分组还是按列分组,默认是按行分组(对记录分组) level:在包含多级索引的 DataFrame...:在应用阶段(apply)是否把分组键加入到索引中,默认为True dropna:在分组时是否把键值为 NA 的行或列丢弃,默认为True 1、按字符串列表分组 按团队和姓名首字母分组,会产生多级索引。...team').mean()[['Q1','Q2']] (3)先选择列再分组最后计算: 当groupby中给出分组键是字符串时,选择的列一定要包含分组键涉及的字段。...df.groupby('team').transform(lambda x: x.mean()).head(10) 因为是按列进行的,因此上述lambda函数的参数x应该理解为表示分组块的每一列,所以函数体中不应该再出现列名
这两种格式的文件都可以用Python的Pandas模块的read_excel方法导入。read_excel方法返回的结果是DataFrame, DataFrame的一列对应着Excel的一列。...JSON对象是由多个键值对组成的,类似于Python的字典; JSON数组由多个JSON对象组成,类似于Python列表。...对于Pandas库中的to_excel()方法,有下列参数说明: sheet_name:字符串,默认值为"Sheet1",指包含DataFrame数据的表的名称。...np_rep:字符串,默认值为 ’ '。指缺失数据的表示方式。 columes:序列,可选参数,要编辑的列。 header:布尔型或字符串列表,默认值为True。...如果给定字符串列表,则表示它是列名称的别名。 index:布尔型,默认值为True,行名(索引)。 index_label:字符串或序列,默认值为None。
以下面这个excel数据表为例,全部选中,按ctrl+c复制: 然后在python中执行pd.read_clipboard(),就能得到一模一样的dataframe数据表: pd.read_clipboard...将strings改为numbers 在pandas中,有两种方法可以将字符串改为数值: astype()方法 to_numeric()方法 先创建一个样本dataframe,看看这两种方法有什么不同。...同样以泰坦尼克数据集为例,里面有一列是年龄特征age: import seaborn as sns # 导出泰坦尼克数据集 df = sns.load_dataset('titanic') df['age...可以看到新增了一列ageGroup,用以展示年龄分组: df['ageGroup'].head() 6....从多个文件中构建一个DataFrame 有时候数据集可能分布在多个excel或者csv文件中,但需要把它读取到一个DataFrame中,这样的需求该如何实现?
为了后续处理方便,我将不需要参与分组的第一列事先设置为索引。 groupby分组相信大部分读者都使用过,但一直都是按行分组,不过groupby不仅可以按行分组,还可以按列进行分组。...[:4] 结果: Index(['2018', '2019', '2020', '2018', '2019', '2020'], dtype='object') 截取每列列名前4个字符,传入groupby...即可作为分组依据,axis=1则指定了groupby按列进行分组而不是默认的按行分组。...split.rename(columns=lambda s: s[5:], inplace=True) 表示对分组后的结果去除列名的前5个字符。...split["年份"] = year 将年份添加到后面单独的一列。 总之这个问题非常简单,相信大部分读者在看到代码后已经秒懂。
以下面这个excel数据表为例,全部选中,按ctrl+c复制: ?...将strings改为numbers 在pandas中,有两种方法可以将字符串改为数值: astype()方法 to_numeric()方法 先创建一个样本dataframe,看看这两种方法有什么不同。...同样以泰坦尼克数据集为例,里面有一列是年龄特征age: import seaborn as sns # 导出泰坦尼克数据集 df = sns.load_dataset('titanic') df['age...可以看到新增了一列ageGroup,用以展示年龄分组: df['ageGroup'].head() ? 6....从多个文件中构建一个DataFrame 有时候数据集可能分布在多个excel或者csv文件中,但需要把它读取到一个DataFrame中,这样的需求该如何实现?
本文中记录Pandas操作技巧,包含: 导入数据 导出数据 查看、检查数据 数据选取 数据清洗 数据处理:Filter、Sort和GroupBy 数据合并 常识 # 导入pandas import pandas...,用法同df.iloc),但需要注意的是loc是按索引,iloc参数只接受数字参数 df.ix[[:5],["col1","col2"]] # 返回字段为col1和col2的前5条数据,可以理解为loc...降序排列数据 df.groupby(col) # 返回一个按列col进行分组的Groupby对象 df.groupby([col1,col2]) # 返回一个按多列进行分组的Groupby对象 df.groupby...(col1)[col2].agg(mean) # 返回按列col1进行分组后,列col2的均值,agg可以接受列表参数,agg([len,np.mean]) df.pivot_table(index=col1..., values=[col2,col3], aggfunc={col2:max,col3:[ma,min]}) # 创建一个按列col1进行分组,计算col2的最大值和col3的最大值、最小值的数据透视表
小技巧 pandas生成数据 导入数据 导出数据 查看数据 数据选择 数据处理 数据分组 数据合并 数据替换--map映射 数据清洗--replace和正则 数据透视表分析--melt函数 将分类中出现次数较少的值归为...合并字典 字符串分割成列表 字符串列表创建字符串 Python查看图片 itertools模块combinations itertools中reduce 字典.get()方法 解压zip压缩包到指定文件路径...降序排列数据 df.groupby(col) # 返回⼀个按列col进⾏分组的Groupby对象 df.groupby([col1,col2]) # 返回⼀个按多列进⾏分组的Groupby对象 df.groupby...(col1)[col2].agg(mean) # 返回按列col1进⾏分组后,列col2的均值,agg可以接受列表参数,agg([len,np.mean]) df.pivot_table(index=...string = "the author is beishanla" s = string.split(" ") s ['the', 'author', 'is', 'beishanla'] 字符串列表创建字符串
DataFrame Pandas 中的 DataFrame 类似于 Excel 工作表。虽然 Excel 工作簿可以包含多个工作表,但 Pandas DataFrames 独立存在。 3....在 Pandas 中,索引可以设置为一个(或多个)唯一值,这就像在工作表中有一列用作行标识符一样。与大多数电子表格不同,这些索引值实际上可用于引用行。...查找子串的位置 FIND电子表格函数返回子字符串的位置,第一个字符为 1。 您可以使用 Series.str.find() 方法查找字符串列中字符的位置。find 搜索子字符串的第一个位置。...按位置提取子串 电子表格有一个 MID 公式,用于从给定位置提取子字符串。获取第一个字符: =MID(A2,1,1) 使用 Pandas,您可以使用 [] 表示法按位置位置从字符串中提取子字符串。...在 Pandas 中提取单词最简单的方法是用空格分割字符串,然后按索引引用单词。请注意,如果您需要,还有更强大的方法。
比如,人口按性别分为男和女,按年龄分为老、中、少。 在计算机语言里,我们通常会用数字来表示,比如用1代表男,0代表女,但是0和1之间并没有大小关系,pandas中用category来表示分类数据。...总结一下,使用category有以下一些好处: 内存使用情况:对于重复值很多的字符串列,category可以大大减少将数据存储在内存中所需的内存量; 运行性能:进行了一些优化,可以提高某些操作的执行速度...2、与category列的合并 还是上面那个例子,但是这次增加了habitat一列,并且species中增加了sanke。...默认情况下,当按category列分组时,即使数据不存在,pandas也会为该类别中的每个值返回结果。...略坑,如果数据类型包含很多不存在的,尤其是在多个不同的category列上进行分组,将会极其损害性能。