首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

Pandas将列中的时间字符串更改为24小时时间格式

Pandas 是一个用于数据处理和分析的 Python 库,它提供了大量的数据结构和函数,使得处理结构化数据变得更加简单高效。在处理时间数据时,Pandas 提供了强大的功能来解析、格式化和操作时间字符串。

基础概念

在 Pandas 中,时间数据通常被存储为 datetime 类型,这是一种特殊的数据类型,用于表示日期和时间。24小时时间格式是一种时间表示方法,其中小时的范围是从0到23,而不是12小时制中的1到12。

相关优势

  • 易于解析:Pandas 可以自动识别多种时间格式,并将其转换为 datetime 类型。
  • 统一处理:将时间数据统一为 datetime 类型后,可以使用 Pandas 提供的各种时间序列函数进行处理。
  • 高效计算datetime 类型支持快速的日期时间运算,如加减天数、小时等。

类型

Pandas 中的时间数据可以是以下几种类型之一:

  • datetime64[ns]:纳秒级别的日期时间。
  • timedelta64[ns]:表示时间间隔。

应用场景

  • 数据分析:在分析时间序列数据时,需要将时间字符串转换为统一的时间格式。
  • 数据清洗:在数据预处理阶段,可能需要校正或标准化时间数据。
  • 数据可视化:在绘制时间序列图表时,需要确保时间数据的准确性。

示例代码

假设我们有一个 DataFrame,其中包含一个名为 time_str 的列,该列包含以12小时制表示的时间字符串。我们可以使用 Pandas 将这些字符串转换为24小时格式。

代码语言:txt
复制
import pandas as pd

# 创建示例 DataFrame
data = {'time_str': ['03:45 PM', '11:20 AM', '07:15 PM']}
df = pd.DataFrame(data)

# 将时间字符串转换为 datetime 类型,并指定格式为24小时制
df['time_24h'] = pd.to_datetime(df['time_str'], format='%I:%M %p').dt.strftime('%H:%M')

print(df)

输出结果将是:

代码语言:txt
复制
  time_str time_24h
0  03:45 PM    15:45
1  11:20 AM    11:20
2  07:15 PM    19:15

遇到的问题及解决方法

如果在转换过程中遇到问题,可能是由于以下原因:

  1. 格式字符串不正确:确保 format 参数与时间字符串的格式相匹配。
  2. 时区问题:如果时间字符串包含时区信息,需要正确处理时区转换。
  3. 非法时间值:如果时间字符串中存在非法的时间值(如 '25:00 PM'),Pandas 将无法解析它。

解决方法:

  • 检查并修正格式字符串。
  • 使用 tz_localizetz_convert 方法处理时区。
  • 在转换前清洗数据,移除或修正非法的时间值。
代码语言:txt
复制
# 示例:处理非法时间值
df['time_str'] = df['time_str'].apply(lambda x: '00:00' if not pd.to_datetime(x, format='%I:%M %p', errors='coerce') else x)

通过以上步骤,可以确保时间字符串被正确地转换为24小时格式。

页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

我想的是将Date那一列转换成时间格式,怎么破?

一、前言 前几天在Python白银交流群【Joker】问了一个Pandas处理字符串的问题,提问截图如下: 二、实现过程 这里【甯同学】给了一个代码,示例代码如下所示: import pandas as...pd.to_datetime(''.join((f'{i}'for i in eval(x))),format='%Y%m%d%H')) df 当然了,这个方法看上去复杂了一些,但是顺利地解决了粉丝的问题...这篇文章主要盘点了一个Pandas处理的问题,文中针对该问题,给出了具体的解析和代码实现,帮助粉丝顺利解决了问题。...最后感谢粉丝【Joker】提问,感谢【甯同学】、【论草莓如何成为冻干莓】、【瑜亮老师】给出的思路和代码解析,感谢【Jun】、【Engineer】等人参与学习交流。

81020
  • 分析你的个人Netflix数据

    将字符串转换为Pandas中的Datetime和Timedelta 我们两个时间相关列中的数据看起来确实正确,但是这些数据实际存储的格式是什么?...对于Title列来说这很好,但是我们需要将两个与时间相关的列更改为正确的数据类型,然后才能使用它们。...具体来说,我们需要做到以下几点: 将Start Time转换为datetime(pandas可以理解和执行计算的数据和时间格式) 将Start Time从UTC转换为本地时区 将持续时间转换为timedelta...现在我们得到了正确格式的列,是时候改变时区。 我们可以使用.tz_convert()将DateTime转换为任何时区,并将参数与要转换为的时区的字符串一起传递给它。...第5步:分析数据 当你意识到你花了多少时间看同一个节目。 我花了多少时间看老友记? 因为我们已经得到了pandas可以计算的持续时间列格式,所以回答这个问题非常简单。

    1.7K50

    如何利用 pandas 根据数据类型进行筛选?

    他的数据大致如下 现在希望分别做如下清洗 “ A列中非字符行 B列中非日期行 C列中数值形式行(包括科学计数法的数值) D列中非整数行 删掉C列中大小在10%-90%范围之外的行 ” 其实本质上都是「...所以同上可以结合 apply 函数轻松搞定~ df[df['C'].str.isdigit().isnull()].dropna() 取出非日期行 至于第 2 题,pandas 中虽有直接判断时间格式函数...所以只要我们将该列转换为时间格式(见习题 8-12)就会将不支持转换的格式修改为缺失值 这样在转换后删除确实值即可 取出非字符行 至于第 1 题,我们可以借助 Python 中 isinstance...函数判断一个变量是否为字符串格式 再同样借助 apply 函数即可找到全部字符串的行,然后使用 ~ 取其补集即可 自定义异常值范围 最后是一个看上去是异常值处理的问题,但本质上还是数据筛选。...当然本文的内容也将再次整理后添加至第 9 章「其他未提及操作中」,点击下方图片即可了解习题详情~ 点击下载「pandas进阶修炼300题」

    1.4K10

    通宵翻译Pandas官方文档,写了这份Excel万字肝货操作!

    导出数据 默认情况下,桌面电子表格软件将保存为其各自的文件格式(.xlsx、.ods 等)。但是,您可以保存为其他文件格式。 pandas 可以创建 Excel 文件、CSV 或许多其他格式。...日期功能 本节将提到“日期”,但时间戳的处理方式类似。 我们可以将日期功能分为两部分:解析和输出。在Excel电子表格中,日期值通常会自动解析,但如果您需要,还有一个 DATEVALUE 函数。...在 Pandas 中,您需要在从 CSV 读取时或在 DataFrame 中读取一次时,将纯文本显式转换为日期时间对象。 解析后,Excel电子表格以默认格式显示日期,但格式可以更改。...在 Pandas 中,您通常希望在使用日期进行计算时将日期保留为日期时间对象。输出部分日期(例如年份)是通过电子表格中的日期函数和 Pandas 中的日期时间属性完成的。...; 如果匹配多行,则每个匹配都会有一行,而不仅仅是第一行; 它将包括查找表中的所有列,而不仅仅是单个指定的列; 它支持更复杂的连接操作; 其他注意事项 1.

    19.6K20

    用Pandas从HTML网页中读取数据

    首先,一个简单的示例,我们将用Pandas从字符串中读入HTML;然后,我们将用一些示例,说明如何从Wikipedia的页面中读取数据。...函数的完整使用方法,下面演示示例: 示例1 第一个示例,演示如何使用Pandas的read_html函数,我们要从一个字符串中的HTML表格读取数据。...df = dfs[0].iloc[:-3, :].copy() 接下来,要学习如何将多级列索引改为一级索引。...\]","") 用set_index更改索引 我们继续使用Pandas的set_index方法将日期列设置为索引,这样做能够为后面的作图提供一个时间类型的Series对象。...DataFrame类型 本文中,学习了用Pandas的read_html函数从HTML中读取数据的方法,并且,我们利用维基百科中的数据创建了一个含有时间序列的图像。

    9.6K20

    Python数据分析实战基础 | 初识Pandas

    06 常用数据类型及操作 1、字符串 字符串类型是最常用的格式之一了,Pandas中字符串的操作和原生字符串操作几乎一毛一样,唯一不同的是需要在操作前加上".str"。...源数据是包含了访客数、转化率和客单价,而实际工作中我们对每个渠道贡献的销售额更感兴趣。...3、时间类型 PANDAS中时间序列相关的水非常深,这里只对日常中最基础的时间格式进行讲解,对时间序列感兴趣的同学可以自行查阅相关资料,深入了解。...在实际业务中,一些时候PANDAS会把文件中日期格式的字段读取为字符串格式,这里我们先把字符串'2019-8-3'赋值给新增的日期列,然后用to_datetime()函数将字符串类型转换成时间格式: ?...转换成时间格式(这里是datetime64)之后,我们可以用处理时间的思路高效处理这些数据,比如,我现在想知道提取数据这一天离年末还有多少天('2019-12-31'),直接做减法(该函数接受时间格式的字符串序列

    1.8K30

    Python数据分析实战基础 | 初识Pandas

    06 常用数据类型及操作 1、字符串 字符串类型是最常用的格式之一了,Pandas中字符串的操作和原生字符串操作几乎一毛一样,唯一不同的是需要在操作前加上".str"。...源数据是包含了访客数、转化率和客单价,而实际工作中我们对每个渠道贡献的销售额更感兴趣。...3、时间类型 PANDAS中时间序列相关的水非常深,这里只对日常中最基础的时间格式进行讲解,对时间序列感兴趣的同学可以自行查阅相关资料,深入了解。...在实际业务中,一些时候PANDAS会把文件中日期格式的字段读取为字符串格式,这里我们先把字符串'2019-8-3'赋值给新增的日期列,然后用to_datetime()函数将字符串类型转换成时间格式: ?...转换成时间格式(这里是datetime64)之后,我们可以用处理时间的思路高效处理这些数据,比如,我现在想知道提取数据这一天离年末还有多少天('2019-12-31'),直接做减法(该函数接受时间格式的字符串序列

    2K12

    pandas基础:数据显示格式转换

    本文通过一个简单的示例演示如何使用melt方法。 图1 考虑以下示例数据集:一个表,其中包含4个国家前6个月的销售数据。然后,我们的目标是将“宽”格式转换为“长”格式,如上图1所示。...这是为了指定要用作标识符变量的列。 value_vars:列名的列表/元组。要取消填充的列,留空意味着使用除id_vars之外的所有列。 var_name:字符串。“variable”列的列名。...value_name:字符串。”value”列的列名。 将pandas数据框架从宽格式转换为长格式 使用“country”列作为标识符变量id_vars。...在第一行代码中,将value_vars留空,实际上是在说:使用除“country”之外的所有列。因此,它相当于下面的第二行代码。...但是,注意到列标题中的一个小问题——“variable”和“value”列的描述性不强。我们想把它们分别改为“Month”和“Sales”。 可以使用df.rename()方法来实现。

    1.3K40

    Python数据分析实战基础 | 初识Pandas

    06 常用数据类型及操作 1、字符串 字符串类型是最常用的格式之一了,Pandas中字符串的操作和原生字符串操作几乎一毛一样,唯一不同的是需要在操作前加上".str"。...源数据是包含了访客数、转化率和客单价,而实际工作中我们对每个渠道贡献的销售额更感兴趣。...3、时间类型 PANDAS中时间序列相关的水非常深,这里只对日常中最基础的时间格式进行讲解,对时间序列感兴趣的同学可以自行查阅相关资料,深入了解。...在实际业务中,一些时候PANDAS会把文件中日期格式的字段读取为字符串格式,这里我们先把字符串'2019-8-3'赋值给新增的日期列,然后用to_datetime()函数将字符串类型转换成时间格式: ?...转换成时间格式(这里是datetime64)之后,我们可以用处理时间的思路高效处理这些数据,比如,我现在想知道提取数据这一天离年末还有多少天('2019-12-31'),直接做减法(该函数接受时间格式的字符串序列

    1.4K40

    Python数据分析实战基础 | 初识Pandas

    06 常用数据类型及操作 1、字符串 字符串类型是最常用的格式之一了,Pandas中字符串的操作和原生字符串操作几乎一毛一样,唯一不同的是需要在操作前加上".str"。...源数据是包含了访客数、转化率和客单价,而实际工作中我们对每个渠道贡献的销售额更感兴趣。...3、时间类型 PANDAS中时间序列相关的水非常深,这里只对日常中最基础的时间格式进行讲解,对时间序列感兴趣的同学可以自行查阅相关资料,深入了解。...在实际业务中,一些时候PANDAS会把文件中日期格式的字段读取为字符串格式,这里我们先把字符串'2019-8-3'赋值给新增的日期列,然后用to_datetime()函数将字符串类型转换成时间格式: ?...转换成时间格式(这里是datetime64)之后,我们可以用处理时间的思路高效处理这些数据,比如,我现在想知道提取数据这一天离年末还有多少天('2019-12-31'),直接做减法(该函数接受时间格式的字符串序列

    1.7K30

    一文带你快速入门Python | 初识Pandas

    06 常用数据类型及操作 1、字符串 字符串类型是最常用的格式之一了,Pandas中字符串的操作和原生字符串操作几乎一毛一样,唯一不同的是需要在操作前加上".str"。...源数据是包含了访客数、转化率和客单价,而实际工作中我们对每个渠道贡献的销售额更感兴趣。...3、时间类型 PANDAS中时间序列相关的水非常深,这里只对日常中最基础的时间格式进行讲解,对时间序列感兴趣的同学可以自行查阅相关资料,深入了解。...在实际业务中,一些时候PANDAS会把文件中日期格式的字段读取为字符串格式,这里我们先把字符串'2019-8-3'赋值给新增的日期列,然后用to_datetime()函数将字符串类型转换成时间格式: ?...转换成时间格式(这里是datetime64)之后,我们可以用处理时间的思路高效处理这些数据,比如,我现在想知道提取数据这一天离年末还有多少天('2019-12-31'),直接做减法(该函数接受时间格式的字符串序列

    1.3K01

    Python数据分析实战基础 | 初识Pandas

    06 常用数据类型及操作 1、字符串 字符串类型是最常用的格式之一了,Pandas中字符串的操作和原生字符串操作几乎一毛一样,唯一不同的是需要在操作前加上".str"。...源数据是包含了访客数、转化率和客单价,而实际工作中我们对每个渠道贡献的销售额更感兴趣。...3、时间类型 PANDAS中时间序列相关的水非常深,这里只对日常中最基础的时间格式进行讲解,对时间序列感兴趣的同学可以自行查阅相关资料,深入了解。...在实际业务中,一些时候PANDAS会把文件中日期格式的字段读取为字符串格式,这里我们先把字符串'2019-8-3'赋值给新增的日期列,然后用to_datetime()函数将字符串类型转换成时间格式: ?...转换成时间格式(这里是datetime64)之后,我们可以用处理时间的思路高效处理这些数据,比如,我现在想知道提取数据这一天离年末还有多少天('2019-12-31'),直接做减法(该函数接受时间格式的字符串序列

    1.3K21

    Pandas高级数据处理:实时数据处理

    DataFrame是Pandas的核心数据结构,能够存储多列不同类型的数值。Pandas的功能强大且灵活,可以轻松地读取、清洗、转换和分析数据。...选择性加载:仅加载需要的列,减少内存占用。可以通过usecols参数指定要加载的列。...数据类型优化:根据实际需求调整数据类型,例如将整数类型改为更小的类型(如int8),或将浮点数类型改为更小的类型(如float32)。...数据格式转换在实时数据处理中,数据格式不一致是一个常见问题。Pandas提供了to_datetime()、to_numeric()等函数来进行格式转换。...# 将字符串转换为日期时间类型df['date'] = pd.to_datetime(df['date'])# 将字符串转换为数值类型df['value'] = pd.to_numeric(df['value

    7410

    10个快速入门Query函数使用的Pandas的查询示例

    在开始之前,先快速回顾一下pandas -中的查询函数query。查询函数用于根据指定的表达式提取记录,并返回一个新的DataFrame。表达式是用字符串形式表示的条件或条件的组合。...返回的输出将包含该表达式评估为真的所有行。 示例1 提取数量为95的所有行,因此逻辑形式中的条件可以写为 - Quantity == 95 需要将条件写成字符串,即将其包装在双引号“”中。...请Query()表达式已经是字符串。那么如何在另一个字符串中写一个字符串?将文本值包装在单个引号“”中,就可以了。...日期时间列过滤 使用Query()函数在日期时间值上进行查询的唯一要求是,包含这些值的列应为数据类型dateTime64 [ns] 在示例数据中,OrderDate列是日期时间,但是我们的df其解析为字符串...所以可以通过编写更非常简单的表达式来过滤: df.query("OrderDate >= '2021-08-15' and OrderDate <= '2021-08-31'") 我们直接传递一个符合日期格式的字符串

    4.4K20

    大数据ETL实践探索(5)---- 大数据ETL利器之 pandas

    这种方法可以让你更清楚地知道哪些列有更多的缺失数据,帮助你决定接下来在数据清洗和数据分析工作中应该采取怎样的行动。...在字符串的开头有一些空格是很常见的。因此,当你想要删除列中字符串开头的空格时,这种方法很实用。...例如,你希望当第一列以某些特定的字母结尾时,将第一列和第二列数据拼接在一起。根据你的需要,还可以在拼接工作完成后将结尾的字母删除掉。...转换时间戳(从字符串类型转换为日期「DateTime」格式) def convert_str_datetime(df): ''' AIM -> Convert datetime(...%f')) 在处理时间序列数据时,你可能会遇到字符串格式的时间戳列。

    1.4K30

    整理了10个经典的Pandas数据查询案例

    返回的输出将包含该表达式评估为真的所有行。 示例1 提取数量为95的所有行,因此逻辑形式中的条件可以写为 Quantity == 95 需要将条件写成字符串,即将其包装在双引号“”中。...请query()表达式已经是字符串。那么如何在另一个字符串中写一个字符串?将文本值包装在单个引号“”中,就可以了。...日期时间列过滤 使用query()函数在日期时间值上进行查询的唯一要求是,包含这些值的列应为数据类型dateTime64 [ns] 在示例数据中,OrderDate列是日期时间,但是我们的df其解析为字符串...所以可以通过编写更非常简单的表达式来过滤: df.query("OrderDate >= '2021-08-15' and OrderDate <= '2021-08-31'") 我们直接传递一个符合日期格式的字符串...但是一定要小心使用inplace=true,因为它会覆盖原始的数据。 总结 我希望在阅读本文后,您可以更频繁,流利地使用Pandas中的query()函数,因为它可以方便以过滤数据集。

    24120

    10快速入门Query函数使用的Pandas的查询示例

    在开始之前,先快速回顾一下pandas -中的查询函数query。查询函数用于根据指定的表达式提取记录,并返回一个新的DataFrame。表达式是用字符串形式表示的条件或条件的组合。...返回的输出将包含该表达式评估为真的所有行。 示例1 提取数量为95的所有行,因此逻辑形式中的条件可以写为 - Quantity == 95 需要将条件写成字符串,即将其包装在双引号“”中。...除此以外, Pandas Query()还可以在查询表达式中使用数学计算 查询中的简单数学计算 数学操作可以是列中的加,减,乘,除,甚至是列中值或者平方等,如下所示: 示例6 df.query("Shipping_Cost...日期时间列过滤 使用Query()函数在日期时间值上进行查询的唯一要求是,包含这些值的列应为数据类型dateTime64 [ns] 在示例数据中,OrderDate列是日期时间,但是我们的df其解析为字符串...所以可以通过编写更非常简单的表达式来过滤: df.query("OrderDate >= '2021-08-15' and OrderDate <= '2021-08-31'") 我们直接传递一个符合日期格式的字符串

    4.5K10
    领券