从链表中删去总和值为零的连续节点 难度中等 给你一个链表的头节点 head,请你编写代码,反复删去链表中由 总和 值为 0 的连续节点组成的序列,直到不存在这样的序列为止。...删除完毕后,请你返回最终结果链表的头节点。 你可以返回任何满足题目要求的答案。 (注意,下面示例中的所有序列,都是对 ListNode 对象序列化的表示。)...: 输入:head = [1,2,3,-3,4] 输出:[1,2,4] 示例 3: 输入:head = [1,2,3,-3,-2] 输出:[1] ---- 暴力解法: 如果要遍历到每一组求和等于0的连续结点...,可以从每个结点出发,遍历它的后缀和,如果它的后缀和等于0了,说明当前遍历的起始结点到令后缀和等于0的这些结点是一组求和等于0的连续结点,应当删除掉,但是不要delete,因为经过测试如果delete掉头结点后...为了避免头结点删除后返回新的头结点的困难,同时可以和起始结点的前一个结点这一想法相配合,可以增加一个哨兵结点 newhead.
默认情况下,rank通过将平均排名分配到每个组来打破平级关系。 rank的常用参数如下,rank(method='', axis='')。当为DataFrame时,axis可以为columns。...rank打破平级常用方法 方法 描述 'average' 默认:每个组分配平均排名 'min' 对整个组使用最小排名 'max' 对整个组使用最大排名 'first' 按照值在数据中的出现次序排名 'dense...---- 5 描述性统计概述与计算 5.1 描述性统计和汇总统计 pandas对象有一个常用数学、统计学方法的集合,大部分属于规约和汇总统计,并且还有处理缺失值的功能。...值的样本标准差 skew, kurt 样本偏度(第三时刻)、样本峰度(第四时刻)的值 cumsum 累计值 cummin, cummax 累计值的最小值和最大值 cumprod 值的累计积 pct_change...;利用corrwith来计算每一列对某一列的相关性,例如frame.corrwith(frame['two'])计算每一列对two列的的相关性,也可以传入axis='columns'逐行计算。
Leetcode -1171.从链表中删去总和值为零的连续节点 题目:给你一个链表的头节点 head,请你编写代码,反复删去链表中由 总和 值为 0 的连续节点组成的序列,直到不存在这样的序列为止。...删除完毕后,请你返回最终结果链表的头节点。 你可以返回任何满足题目要求的答案。 (注意,下面示例中的所有序列,都是对 ListNode 对象序列化的表示。)...对于链表中的每个节点,节点的值: - 1000 的next 开始遍历,每次遍历中 cur 的 val 都进行累减,如果累减的结果有等于 0 的,就证明从...上图中蓝色的边和节点为答案链表。
使用DataFrame数据调用max()函数,返回结果为DataFrame中每一列的最大值,即使数据是字符串或object也可以返回最大值。...在Pandas中,数据的获取逻辑是“先列后行”,所以max()默认返回每一列的最大值,axis参数默认为0,如果将axis参数设置为1,则返回的结果是每一行的最大值,后面介绍的其他统计运算函数同理。...min(): 返回数据的最小值。使用DataFrame数据调用min()函数,返回结果为DataFrame中每一列的最小值,即使数据是字符串或object也可以返回最小值。...使用DataFrame数据调用mean()函数,返回结果为DataFrame中每一列的平均值,mean()与max()和min()不同的是,不能计算字符串或object的平均值,所以会自动将不能计算的列省略...使用DataFrame数据调用median()函数,返回结果为DataFrame中每一列的中位数,median()也不能计算字符串或object的中位数,会自动将不能计算的列省略。 ?
3 窗口函数 窗口函数,是对某列操作,返回长度相同的一列,主要包括排名函数、偏移函数、累计聚合函数。...在某种分组排序规则之后,row_number()生成一个连续不重复的编码,min_rank()生成一个不连续的编码,但是对相同的记录编码相同,而dense_rank()生成一个连续的编码,相同记录有相同的编码...n():按照某种规则分组排序后(可选),count计数,不去重 n_distinct():按照某种规则分组排序后(可选),count计数,去重 ?...注意:Python中n()函数需要传入参数,R中不需要传入参数;Python中输出列按照字段名称升序排列,R中输出的列按照书写顺序输出。...5 总结 数据处理1-3,主要介绍了Python中dfply和R中dplyr包中的数据处理函数,几乎满足数据预处理中筛选变量、衍生变量以及计算一些统计量的需求。
后来才发现,原来不是 Python 数据处理厉害,而是他有数据分析神器—— pandas 前言 本系列上一节已经介绍了最简单的 shift 方法应用,这一节将结合其他技巧,解决诸如"某城市一年最大连续没下雨天数...为1,False 为0 - G列:累计求和,上图可直接看到 G2 单元格的公式,不多说了 - 注意看 G列 的内容,相当于根据 C列的内容,相同连续值被划分到一个独立的编号 - 接下来只需要条件筛选+...分组统计,即可简单求出结果 后面的条件筛选+分组不再用 Excel 操作了(因为操作比较麻烦) pandas 中的对应实现 现在关键是怎么在 pandas 中完成上述 Excel 中的操作,实际非常简单...= df.下雨) 相当于 Excel 操作中的 E列 - .cumsum() 相当于 Excel 操作中的 G列 接下来是分组统计,pandas 的分组其实不需要把辅助列加到 DataFrame 上的...: - 行4:筛选下雨的行的条件 - 行6:先对 df 过滤下雨的行,按 diff_nums 分组统计 - 结果是一下子统计出各个连续下雨的天数与日期范围 结果是需要得到其中 count 列的最大值的行
一维数组的索引 多维数组的索引 (2)切片索引 一维数组的切片索引(与Python列表的切片索引一样) 多维数组的切片索引 (3)花式索引 元素索引和切片索引都是仅局限于连续区域的值,而花式索引可以选取特定区域的值...也可以在创建Series的时候为值直接创建索引。 b、通过字典的形式来创建Series。 (3)获取Series中的值 通过索引的方式选取Series中的单个或一组值。...obj.rank() (2)DataFrame数据结构的排序和排名 按索引值进行排列,一列或多列中的值进行排序,通过by将列名传递给sort_index. 5、缺失数据处理 (1)滤出缺失数据 使用data.dropna...(列从0开始计数) 6、汇总和计算描述统计 就是针对数组进行常用的数学和统计运算。大部分都属于约简和汇总统计。 其中有求和(sum)运算、累计(cumsum)运算、平均值(mean)等运算。...8、值计数 用于计算一个Series中各值出现的次数。 9、层次化索引 层次化索引是pandas的一个重要功能,它的作用是使你在一个轴上拥有两个或多个索引级别。
默认参数 按升序对结果进行排序 按字母顺序排列结果 结果中包含空值 以百分比计数显示结果 将连续数据分入离散区间 分组并调用 value_counts() 将结果系列转换为 DataFrame 应用于DataFrame...1、默认参数 Pandas value_counts() 函数返回一个包含唯一值计数的系列。...默认情况下,结果系列按降序排列,不包含任何 NA 值。例如,让我们从 Titanic 数据集中获取“Embarked”列的计数。...一个常见的用例是按某个列分组,然后获取另一列的唯一值的计数。例如,让我们按“Embarked”列分组并获取不同“Sex”值的计数。...Pandas DataFrame.value_counts() 返回一个包含 DataFrame 中唯一行计数的系列。
数据大致如下: - 一行记录表示,某时间点(updateTime)某地区(cityName)的各项疫情指标 - 由于网站上显示的是当前最新累计数据,因此本数据的统计指标同样是累计数值 面对几万行多列的数据..."**cityName**" 都没有缺失值 但是,当看到"**city_zipCode**" 时,却发现问题了: - 有1266个缺失值 - 存在特殊的值,例如:-1,0 可能你会说,我们可以直接使用...- 如果使用"cityName"进行处理,结果就认为有2个区,并且数据还会翻倍(因为数据指标都是累计数)。 现在,我们应该要怀疑这里的数据是否有其他的问题。...--- 那就取出每个城市中最大的编码作为该城市的编码吧: - 行6:取出 city_zipCode 列的最大值 - 现在结果已经是每个城市只保留一条记录了 但是,这只是解决了一半的问题,现在仍然有那些空编码的城市...下一篇,将教你怎么快速把累计数据变成每天变化数据。
题目 给你一个链表的头节点 head,请你编写代码,反复删去链表中由 总和 值为 0 的连续节点组成的序列,直到不存在这样的序列为止。 删除完毕后,请你返回最终结果链表的头节点。...你可以返回任何满足题目要求的答案。 (注意,下面示例中的所有序列,都是对 ListNode 对象序列化的表示。)...对于链表中的每个节点,节点的值:-1000 <= node.val <= 1000....哈希表 建立包含当前节点的前缀和sum为Key,当前节点指针为Value的哈希表 当sum在哈希表中存在时,两个sum之间的链表可以删除 先将中间的要删除段的哈希表清除,再断开链表 循环执行以上步骤 ?...,值为0 newHead->next = head; ListNode *prev = newHead, *cur = head, *temp; unordered_map
6.2 区域索引 6.2.1 用loc取连续的多行 提取索引值为2到索引值为4的所有行,即提取第3行到第5行,注意:此时切片的开始和结束都包括在内。 data.loc[2:4] 输出结果: ?...6.2.2 用loc取不连续的多行 提取索引值为2和索引值为4的所有行,即提取第3行和第5行。 data.loc[[2,4]] 输出结果: ?...6.2.5 用iloc取连续的多行和多列 提取第3行到第6行,第4列到第5列的值,取得是行和列交叉点的位置。 data.iloc[2:6,3:5] 输出结果: ?...6.2.6 用iloc取不连续的多行和多列 提取第3行和第6行,第4列和第5列的交叉值 data.iloc[[2,6],[3,5]] 输出结果: ?...6.3 值的判断 方式一:判断origin列的值是否为China data['origin']=="China" 方式二:判断department列的值是否为水果 data['department']
Cumsum 示例dataframe 包含3个小组的年度数据。我们可能只对年度数据感兴趣,但在某些情况下,我们同样还需要一个累计数据。...这样得到的累积值在某些情况下意义不大,因为我们更需要不同小组的累计数据。对于这个问题有一个非常简单方便的解决方案,我们可以同时应用groupby和cumsum函数。...假设我们有一个包含[1,7,5,3]的序列。分配给这些值的等级为[1,4,3,2]。 df['rank_1'] = df['value_1'].rank() df ? 10....Melt Melt用于将维数较大的 dataframe转换为维数较少的 dataframe。一些dataframe列中包含连续的度量或变量。在某些情况下,将这些列表示为行可能更适合我们的任务。...如果axis参数设置为1,nunique将返回每行中唯一值的数目。 13. Lookup 'lookup'可以用于根据行、列的标签在dataframe中查找指定值。假设我们有以下数据: ?
在Excel中,我们可以看到行、列和单元格,可以使用“=”号或在公式中引用这些值。...在Python中,数据存储在计算机内存中(即,用户不能直接看到),幸运的是pandas库提供了获取值、行和列的简单方法。 先准备一个数据框架,这样我们就有一些要处理的东西了。...df.columns 提供列(标题)名称的列表。 df.shape 显示数据框架的维度,在本例中为4行5列。 图3 使用pandas获取列 有几种方法可以在pandas中获取列。...在pandas中,这类似于如何索引/切片Python列表。 要获取前三行,可以执行以下操作: 图8 使用pandas获取单元格值 要获取单个单元格值,我们需要使用行和列的交集。...接着,.loc[[1,3]]返回该数据框架的第1行和第4行。 .loc[]方法 正如前面所述,.loc的语法是df.loc[行,列],需要提醒行(索引)和列的可能值是什么?
6.2 区域索引 6.2.1 用loc取连续的多行 提取索引值为2到索引值为4的所有行,即提取第3行到第5行,注意:此时切片的开始和结束都包括在内。 data.loc[2:4] 输出结果: ?...6.2.2 用loc取不连续的多行 提取索引值为2和索引值为4的所有行,即提取第3行和第5行。 data.loc[[2,4]] 输出结果: ?...6.2.5 用iloc取连续的多行和多列 提取第3行到第6行,第4列到第5列的值,取得是行和列交叉点的位置。 data.iloc[2:6,3:5] 输出结果: ?...6.2.6 用iloc取不连续的多行和多列 提取第3行和第6行,第4列和第5列的交叉值 data.iloc[[2,6],[3,5]] 输出结果: ?...6.3 值的判断 方式一:判断origin列的值是否为China data['origin']=="China" 方式二:判断department列的值是否为水果 data['department'
默认参数 按升序对结果进行排序 按字母顺序排列结果 结果中包含空值 以百分比计数显示结果 将连续数据分入离散区间 分组并调用 value_counts() 将结果系列转换为 DataFrame 应用于DataFrame...1、默认参数 Pandas value_counts() 函数返回一个包含唯一值计数的系列。...默认情况下,结果系列按降序排列,不包含任何 NA 值。例如,让我们从 Titanic 数据集中获取“Embarked”列的计数。 ...一个常见的用例是按某个列分组,然后获取另一列的唯一值的计数。例如,让我们按“Embarked”列分组并获取不同“Sex”值的计数。 ...Pandas DataFrame.value_counts() 返回一个包含 DataFrame 中唯一行计数的系列。
一、前言 前几天在J哥的Python群【Z】问了一个Pandas数据处理的问题,一起来看看吧。 各位群友,打扰了。能否咨询个pandas的处理问题?...左边一列id代表个体/记录,右边是这些个体/记录属性的布尔值。我想做个处理,返回每个个体/记录中属性为1的列标签集合。...后来他粉丝自己的朋友也提供了一个更好的方法,如下所示: 方法还是很多的,不过还得是apply最为Pythonic! 三、总结 大家好,我是皮皮。...这篇文章主要盘点了一个Pandas数据处理问题,文中针对该问题,给出了具体的解析和代码实现,帮助粉丝顺利解决了问题。...站不住就准备加仓,这个pandas语句该咋写?
例题描述和简单分析有 Excel 文件,数据如下所示:A列的数据由多段组成,每一段是连续的 N 行 +1 个空行,现在要新 B 列,将每段 N 行的字符串用横线连接起来,填在空行处,B 列其他位置保持空...([null]*(~.len()-1)|~.to(~.len()-1).concat(""-"")).conj()",A1:A28)如图:简要说明:当上一个成员为空串时,新分一组,去掉每组内的空串。...将每组的成员用 - 拼接成串,计算每组有多少个成员就在 [串] 前补齐多少个空串。
一、前言 前几天在Python白银交流群【上海新年人】问了一个Pandas数据提取的问题,问题如下:譬如我要查找某列中最大的值,如何做? 二、实现过程 这里他自己给了一个办法,而且顺便增加了难度。...print(df[df.点击 == df['点击'].max()]),方法确实是可以行得通的,也能顺利地解决自己的问题。...顺利地解决了粉丝的问题。 三、总结 大家好,我是皮皮。这篇文章主要盘点了一个Pandas数据提取的问题,文中针对该问题,给出了具体的解析和代码实现,帮助粉丝顺利解决了问题。...最后感谢粉丝【上海新年人】提出的问题,感谢【瑜亮老师】给出的思路,感谢【莫生气】、【添砖java】、【冯诚】等人参与学习交流。
2、现在我们想对第一列或者第二列等数据进行操作,以最大值和最小值的求取为例,这里以第一列为目标数据,来进行求值。 ?...通常我们通过Python来处理数据,用的比较多的两个库就是numpy和pandas,在本篇文章中,将分别利用两个库来进行操作。...3、其中使用pandas库来实现读取文件夹下多个CSV文件中的第一列数据并求其最大值和最小值的代码如下图所示。 ? 4、通过pandas库求取的结果如下图所示。 ?...通过该方法,便可以快速的取到文件夹下所有文件的第一列的最大值和最小值。 5、下面使用numpy库来实现读取文件夹下多个CSV文件中的第一列数据并求其最大值和最小值的代码如下图所示。 ?.../小结/ 本文基于Python,使用numpy库和pandas库实现了读取文件夹下多个CSV文件,并求取文件中第一列数据的最大值和最小值,当然除了这两种方法之外,肯定还有其他的方法也可以做得到的,欢迎大家积极探讨
领取专属 10元无门槛券
手把手带您无忧上云