首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

如何用Python计算日期之间天数

delta = date1 - date2 # 提取天数 days_difference = delta.days print(f"日期1与日期2相 {days_difference} 天。")...- given_date # 提取天数 days_difference = time_difference.days print(f"给定日期和今天相差 {days_difference} 天。...delta = date1 - date2 # 提取天数 days_difference = delta.days print(f"日期1与日期2相 {days_difference} 天。")...delta = date1 - date2 # 提取天数 days_difference = delta.days print(f"日期1与日期2相 {days_difference} 天。")...通过这三种方法,可以轻松地计算两个日期之间天数。这些方法对于日常编程任务日期和时间处理非常有用。无论是在任务计划、数据分析还是应用程序开发,了解如何计算日期都将是一个有用技能。

1.4K20
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    Pandas实现这股票代码10-12之间股票筛出来

    一、前言 前几天在Python白银交流群【YVONNE】问了一个Pandas数据分析问题,一起来看看吧。 问题描述:原始数据长这样 ,我需要把SHRCD这股票代码10-12之间股票筛出来。...原始数据如下图所示: 他报错内容如下所示: 他说我不能比int和str ,但我以为我取证以后就直接是int了,所以不知道怎么改 也可能是我没搞懂int和str。...二、实现过程 这里【莫生气】给了一个思路: 看上去整体代码没啥问题,主要是括号不对称导致。 经过点拨,顺利地解决了粉丝问题。后来【瑜亮老师】也指出其实不用转换成int也能比较大小。...另外代码有提示,这里标红了,可以针对性解决问题。 三、总结 大家好,我是皮皮。这篇文章主要盘点了一个Pandas数据处理问题,文中针对该问题,给出了具体解析和代码实现,帮助粉丝顺利解决了问题

    17410

    Pandas如何查找某中最大值?

    一、前言 前几天在Python白银交流群【上海新年人】问了一个Pandas数据提取问题,问题如下:譬如我要查找某中最大值,如何做? 二、实现过程 这里他自己给了一个办法,而且顺便增加了难度。...print(df[df.点击 == df['点击'].max()]),方法确实是可以行得通,也能顺利地解决自己问题。...顺利地解决了粉丝问题。 三、总结 大家好,我是皮皮。这篇文章主要盘点了一个Pandas数据提取问题,文中针对该问题,给出了具体解析和代码实现,帮助粉丝顺利解决了问题。...最后感谢粉丝【上海新年人】提出问题,感谢【瑜亮老师】给出思路,感谢【莫生气】、【添砖java】、【冯诚】等人参与学习交流。

    34610

    pandasloc和iloc_pandas获取指定数据行和

    大家好,又见面了,我是你们朋友全栈君 实际操作我们经常需要寻找数据某行或者某,这里介绍我在使用Pandas时用到两种方法:iloc和loc。...读取第二行值 (2)读取第二行值 (3)同时读取某行某 (4)进行切片操作 ---- loc:通过行、名称或标签来索引 iloc:通过行、索引位置来寻找数据 首先,我们先创建一个...Dataframe,生成数据,用于下面的演示 import pandas as pd import numpy as np # 生成DataFrame data = pd.DataFrame(np.arange...[1,:] (2)读取第二值 # 读取第二全部值 data2 = data.loc[ : ,"B"] 结果: (3)同时读取某行某 # 读取第1行,第B对应值 data3...3, 2:4]第4行、第5取不到 发布者:全栈程序员栈长,转载请注明出处:https://javaforall.cn/178799.html原文链接:https://javaforall.cn

    8.8K21

    对比Excel,Python pandas删除数据框架

    标签:Python与Excel,pandas 删除也是Excel常用操作之一,可以通过功能区或者快捷菜单命令或者快捷键来实现。...上一篇文章,我们讲解了Python pandas删除数据框架中行一些方法,删除与之类似。然而,这里想介绍一些新方法。取决于实际情况,正确地使用一种方法可能比另一种更好。...准备数据框架 创建用于演示删除数据框架,仍然使用前面给出“用户.xlsx”数据。 图1 .drop()方法 与删除行类似,我们也可以使用.drop()删除。...唯一区别是,在该方法,我们需要指定参数axis=1。下面是.drop()方法一些说明: 要删除单列:传入列名(字符串)。 删除多:传入要删除名称列表。...图2 del方法 del是Python一个关键字,可用于删除对象。我们可以使用它从数据框架删除。 注意,当使用del时,对象被删除,因此这意味着原始数据框架也会更新以反映删除情况。

    7.2K20

    用过Excel,就会获取pandas数据框架值、行和

    在Excel,我们可以看到行、和单元格,可以使用“=”号或在公式引用这些值。...在Python,数据存储在计算机内存(即,用户不能直接看到),幸运pandas库提供了获取值、行和简单方法。 先准备一个数据框架,这样我们就有一些要处理东西了。...df.columns 提供(标题)名称列表。 df.shape 显示数据框架维度,在本例为4行5。 图3 使用pandas获取 有几种方法可以在pandas获取。...在pandas,这类似于如何索引/切片Python列表。 要获取前三行,可以执行以下操作: 图8 使用pandas获取单元格值 要获取单个单元格值,我们需要使用行和交集。...记住这种表示法一个更简单方法是:df[列名]提供一,然后添加另一个[行索引]将提供该特定项。 假设我们想获取第2行Mary Jane所在城市。

    19.1K60

    pythonpandasDataFrame对行和操作使用方法示例

    pandasDataFrame时选取行或: import numpy as np import pandas as pd from pandas import Sereis, DataFrame...'w',使用类字典属性,返回是Series类型 data.w #选择表格'w',使用点属性,返回是Series类型 data[['w']] #选择表格'w',返回是DataFrame...(0) #取data第一行 data.icol(0) #取data第一 ser.iget_value(0) #选取ser序列第一个 ser.iget_value(-1) #选取ser序列最后一个...6所在第4,有点拗口 Out[31]: d three 13 data.ix[data.a 5,2:4] #选择'a'中大于5所在第3-5(不包括5) Out[32]: c...github地址 到此这篇关于pythonpandasDataFrame对行和操作使用方法示例文章就介绍到这了,更多相关pandas库DataFrame行列操作内容请搜索ZaLou.Cn以前文章或继续浏览下面的相关文章希望大家以后多多支持

    13.4K30

    Pandas速查卡-Python数据科学

    df.groupby([col1,col2]) 从多返回一组对象值 df.groupby(col1)[col2] 返回col2平均值,按col1值分组(平均值可以用统计部分几乎任何函数替换...加入/合并 df1.append(df2) 将df1行添加到df2末尾(数应该相同) df.concat([df1, df2],axis=1) 将df1添加到df2末尾(行数应该相同...) df1.join(df2,on=col1,how='inner') SQL类型将df1与df2上连接,其中col行具有相同值。...df.describe() 数值汇总统计信息 df.mean() 返回所有平均值 df.corr() 查找数据框之间相关性 df.count() 计算每个数据框非空值数量 df.max...() 查找每个最大值 df.min() 查找每最小值 df.median() 查找每中值 df.std() 查找每个标准 点击“阅读原文”下载此速查卡打印版本 END.

    9.2K80

    利用pandas我想提取这个楼层数据,应该怎么操作?

    一、前言 前几天在Python白银交流群【东哥】问了一个Pandas数据处理问题。问题如下所示:大佬们,利用pandas我想提取这个楼层数据,应该怎么操作?...其他【暂无数据】这些数据需要删除,其他有数字就正常提取出来就行。 二、实现过程 这里粉丝目标应该是去掉暂无数据,然后提取剩下数据楼层数据。看需求应该是既要层数也要去掉暂无数据。...目标就只有一个,提取楼层数据就行,可以直接跳过暂无数据这个,因为暂无数据里边是没有数据,相当于需要剔除。...如果你也有类似这种数据分析小问题,欢迎随时来交流群学习交流哦,有问必答! 三、总结 大家好,我是皮皮。...这篇文章主要盘点了一个Pandas数据处理问题,文中针对该问题,给出了具体解析和代码实现,帮助粉丝顺利解决了问题。

    11710

    在Python里,用股票案例讲描述性统计分析方法(内容来自我书)

    中位数也叫中值,假设样本个数是奇数,那么数据按顺序排列后处于居中位置数则是中位数,如果样本个数是偶数,那么排序后,中间两个数据均值则是中位数。...理解概念后,在如下CalAvgMore.py范例,将以股票收盘价为例,演示平均数、中位数和四分位数求法。...PandasDataFrame对象已经封装了求各种统计数据方法,具体而言,能通过第5行mean方法求平均值,在调用时,还可以用诸如df['Close']样式,指定针对哪数据计算。...3 统计极差、方差和标准 在统计学里,一般用这三个指标来衡量样本数据离散度,即衡量样本数对于中心位置(一般是平均数)偏离程度。...其中,极差算法比较简单,是样本里最大值和最小值,而方差是每个样本值与全体样本值平均数之差平方值平均数,标准则是方差平方根。

    1.4K10

    盘点66个Pandas函数,轻松搞定“数据清洗”!

    今天我们重新盘点66个Pandas函数合集,包括数据预览、数值数据操作、文本数据操作、行/操作等等,涉及“数据清洗”方方面面。...此外,isnull().any()会判断哪些””存在缺失值,isnull().sum()用于将为空个数统计出来。...clip()方法,用于对超过或者低于某些数数值进行截断[1],来保证数值在一定范围。比如每月迟到天数一定是在0-31天之间。...df["迟到天数"] = df["迟到天数"].clip(0,31) 唯一值,unique()是以数组形式返回所有唯一值,而nunique()返回是唯一值个数。...函数方法 用法释义 count 非NaN数据项计数 sum 求和 mean 平均值 median 中位数 mode 众数 max 最大值 min 最小值 std 标准 var 方差 quantile

    3.8K11

    使用Pandas返回每个个体记录属性为1标签集合

    一、前言 前几天在J哥Python群【Z】问了一个Pandas数据处理问题,一起来看看吧。 各位群友,打扰了。能否咨询个pandas处理问题?...左边一id代表个体/记录,右边是这些个体/记录属性布尔值。我想做个处理,返回每个个体/记录属性为1标签集合。...后来他粉丝自己朋友也提供了一个更好方法,如下所示: 方法还是很多,不过还得是apply最为Pythonic! 三、总结 大家好,我是皮皮。...这篇文章主要盘点了一个Pandas数据处理问题,文中针对该问题,给出了具体解析和代码实现,帮助粉丝顺利解决了问题。...站不住就准备加仓,这个pandas语句该咋写?

    13930

    Pandas教程

    ;(2)它非常小,很简单 泰坦尼克号数据集可以在这里下载:https://bit.ly/33tOJ2S 导入库 为了我们目的,“Pandas”库是必须导入 import pandas as pd...data.Age.max() 80.0 某些特征最小值 data.Age.min() 0.42 某些特征平均值 data.Age.mean() 29.69911764705882 某些特征中值...正如预期那样,它将只显示数值数据统计信息。 data.corr()默认情况下皮尔逊相关性 ? J) 所选变量(示例为“Survived”)与其他变量之间相关性。...new_df = data.copy() 计算年龄平均值: new_df.Age.mean() 29.69911764705882 用数据平均值填充NAN,并将结果分配给一个新。...new_df['Age_mean'] = new_df.Age.fillna(new_df.Age.mean()) 年龄中值 new_df.Age.median() 28.0 用数据中值填充任意

    2.9K40
    领券