首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

ExcelVBA删除包含指定字符所在的行

ExcelVBA删除包含指定字符所在的行 =====相关==== 1.文件夹中多工作薄指定工作表中提取指定字符的数据 2.回复网友VBA之Find_FindNext_并修改数据 =====end==...== 【问题】 例子:相类似的问题也可以哦今天有人提出这样子一个问题他有很多个工作表成绩表,想删除“缺考”的字符所在的行 【思路】 用Find、FindNext找到“缺考“的行,再union再删除...【代码】 Sub yhd_ExcelVBA删除包含指定字符所在的行() Dim sht As Worksheet, s As String s = "缺考" For Each...清理 =====学习笔记===== 在Excel中通过VBA对Word文档进行查找替换 ExcelVBA文件操作-获取文件夹(含子文件夹)所有文件列表(优化版) ExcelVBA随机生成不重复的N

34750

在VimVi中删除行、多行、范围、所有行及包含模式的行

使用linux服务器,免不了和vi编辑打交道,命令行下删除数量少还好,如果删除很多,光靠删除键一点点删除真的是头痛,还好Vi有快捷的命令可以删除多行、范围。 删除行 在Vim中删除一行的命令是dd。...删除多行 要一次删除多行,请在dd命令前添加要删除的行数,例如,要删除五行,请执行以下操作: 1、按Esc键进入正常模式。 2、将光标放在要删除的第一行上。...删除包含模式的行 基于特定模式删除多行的语法如下: :g//d 全局命令(g)告诉删除命令(d)删除所有包含的行。 要匹配与模式不匹配的行,请在模式之前添加感叹号(!): :g!...//d 模式可以是文字匹配或正则表达式,以下是一些示例: :g/foo/d-删除所有包含字符串“foo”的行,它还会删除“foo”嵌入较大字词(例如“football”)的行。 :g!.../foo/d-删除所有不包含字符串“foo”的行。 :g/^#/d-从Bash脚本中删除所有注释,模式^#表示每行以#开头。 :g/^$/d-删除所有空白行,模式^$匹配所有空行。

107.7K32
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    pandas删除某列有空值的行_drop的之

    大家好,又见面了,我是你们的朋友全栈君。 0.摘要 dropna()方法,能够找到DataFrame类型数据的空值(缺失值),将空值所在的行/列删除后,将新的DataFrame作为返回值返回。...如果该行/列中,非空元素数量小于这个值,就删除该行/列。 subset:子集。列表,元素为行或者列的索引。...2.示例 创建DataFrame数据: import numpy as np import pandas as pd a = np.ones((11,10)) for i in range(len(a...:删除第0、5、6、7列都为空的行 # 设置子集:删除第0、5、6、7列都为空的行 print(d.dropna(axis='index', how='all', subset=[0,5,6,7]))...设置子集:删除第5、6、7行存在空值的列 # 设置子集:删除第5、6、7行存在空值的列 print(d.dropna(axis=1, how='any', subset=[5,6,7])) 原地修改

    11.9K40

    pandas数据清洗-删除没有序号的所有行的数据

    pandas数据清洗-删除没有序号的所有行的数据 问题:我的数据如下,要求:我想要的是:有序号的行留下,没有序号的行都不要 图片 【代码及解析】 import pandas as pd filepath...="E:/yhd_python/pandas.read_excel/student.xlsx" df=pd.read_excel(filepath,sheet_name='Sheet1',skiprows...,默认0,即取第一行 skiprows:省略指定行数的数据 skip_footer:省略从尾部数的行数据 **继续** lst=[] for index,row in df.iterrows():...它返回每行的索引及一个包含行本身的对象。...所以,当我们在需要遍历行数据的时候,就可以使用 iterrows()方法实现了。 df1=df.drop(labels=lst) 删除l列表lst存储的所有行号 【效果图】: 完成

    1.6K10

    对比Excel,Python pandas删除数据框架中的行

    标签:Python与Excel,pandas 对于Excel来说,删除行是一项常见任务。本文将学习一些从数据框架中删除行的技术。...准备数据框架 我们将使用前面系列中用过的“用户.xlsx”来演示删除行。 图1 注意上面代码中的index_col=0?如果我们将该参数留空,则索引将是基于0的索引。...使用.drop()方法删除行 如果要从数据框架中删除第三行(Harry Porter),pandas提供了一个方便的方法.drop()来删除行。...inplace:告诉pandas是否应该覆盖原始数据框架。 按名称删除行 图2 我们跳过了参数axis,这意味着将其保留为默认值0或行。因此,我们正在删除索引值为“Harry Porter”的行。...这次我们将从数据框架中删除带有“Jean Grey”的行,并将结果赋值到新的数据框架。 图6

    4.6K20

    Excel小技巧90:快速删除包含指定值的所有行

    有一个Excel操作问题:我想删除所有包含有“完美Excel”的行,如何快速操作? 我想,你肯定是多么地不想再看“完美Excel”公众号了!...如下图1所示的工作表,现在要删除单元格内容为“完美Excel”所在的行。 ? 图1 首先,选择所有的数据。...图2 单击“查找全部”按钮,在下面的列表框中选中全部查到的单元格(先选取第1行,按住Shift键,滚动到最后,选取最后1行,这将选择所有查找到的结果),如下图3所示。 ?...图3 单击“关闭”按钮,此时,工作表中所有含有内容“完美Excel”的单元格都被选择。 接下来,按 组合键,弹击“删除”对话框,选取“整行”,如下图4所示。 ?...图4 单击“确定”按钮,即可删除所有含有“完美Excel”内容的单元格所在的行。 详细的操作演示见下图5。 ? 图5

    11K50

    盘点一个Pandas提取Excel列包含特定关键词的行(上篇)

    一、前言 前几天在Python白银交流群【上海新年人】问了一个Pandas数据提取的问题,问题如下:大佬们,请教个小问题,我要查找某列中具体的值,譬如df[df['作者'] == 'abc'],但实际上这样子我找不到...ABC,因为对方实际是小写的abc。...给了一个指导,如下所示: 全部转大写或者小写你就不用考虑了 只是不确定你实际的代码场景。后来【论草莓如何成为冻干莓】给了一份代码,如下图所示: 顺利地解决了粉丝的问题。...但是粉丝的需求又发生了改变,下一篇文章我们一起来看看这个“善变”的粉丝提问。 三、总结 大家好,我是皮皮。...这篇文章主要盘点了一个Pandas数据提取的问题,文中针对该问题,给出了具体的解析和代码实现,帮助粉丝顺利解决了问题。

    32310

    盘点一个Pandas提取Excel列包含特定关键词的行(中篇)

    一、前言 前几天在Python白银交流群【上海新年人】问了一个Pandas数据提取的问题,但是粉丝又改需求了,需求改来改去的,就是没个定数。 这里他的最新需求,如上图所示。...他的意思在这里就是要上图中最下面这3个。 二、实现过程 后来【论草莓如何成为冻干莓】给了一份代码,如下图所示: 顺利地解决了粉丝的问题。...可以看到,代码刚给出来,但是粉丝的需求又发生了改变,不过不慌,这里又给出了对应代码,如下图所示: 一看就会,一用就废,粉丝自己刚上手,套用到自己的数据里边,代码就失灵了。...下一篇文章,我们再来看这位粉丝新遇到的问题。 三、总结 大家好,我是皮皮。这篇文章主要盘点了一个Pandas数据提取的问题,文中针对该问题,给出了具体的解析和代码实现,帮助粉丝顺利解决了问题。...最后感谢粉丝【上海新年人】提出的问题,感谢【鶏啊鶏。】、【论草莓如何成为冻干莓】给出的思路,感谢【莫生气】等人参与学习交流。

    21910

    盘点一个Pandas提取Excel列包含特定关键词的行(下篇)

    一、前言 前几天在Python白银交流群【上海新年人】问了一个Pandas数据提取的问题,上一篇中已经给出了代码,粉丝自己可能还没有领悟明白,一用就废,遇到了问题。...他的代码照片如下图: 这个代码这么写,最后压根儿就没有得到他自己预期的结果,遂来求助。这里又回归到了他自己最开始的需求澄清!!!论需求表达清晰的重要性!...二、实现过程 后来【莫生气】给了一份代码,如下图所示: 本以为顺利地解决了问题,但是粉丝又马上增改需求了,如下图所示: 真的,代码写的,绝对没有他需求改的快。得亏他没去做产品经理,不然危矣!...能给你做出来,先实现就不错了,再想着优化的事呗。 后来【莫生气】给了一个正则表达式的写法,总算是贴合了这个粉丝的需求。 如果要结合pandas的话,可以写为下图的代码: 至此,粉丝不再修改需求。...这篇文章主要盘点了一个Pandas数据提取的问题,文中针对该问题,给出了具体的解析和代码实现,帮助粉丝顺利解决了问题。 最后感谢粉丝【上海新年人】提出的问题,感谢【鶏啊鶏。】

    33110

    使用pandas的话,如何直接删除这个表格里面X值是负数的行?

    一、前言 前几天在Python白银交流群【空翼】问了一个pandas处理Excel数据的问题,提问截图如下: 下图是他的原始数据部分截图: 二、实现过程 看上去确实是两列,但是X列里边又暗藏玄机,如果只是单纯的针对这一列全部是数值型的数据进行操作...如果只是想保留非负数的话,而且剔除值为X的行,【Python进阶者】也给了一个答案,代码如下所示: import pandas as pd df = pd.read_excel('U.xlsx') #...他想实现的效果是,保留列中的空值、X值和正数,而他自己的数据还并不是那么的工整,部分数据入下图所示,可以看到130-134行的情况。...顺利地解决了粉丝的问题。其中有一行代码不太好理解,解析如下: 三、总结 大家好,我是皮皮。...这篇文章主要盘点了一个Pandas处理的问题,文中针对该问题,给出了具体的解析和代码实现,帮助粉丝顺利解决了问题。 最后感谢粉丝【空翼】提问,感谢【Jun.】

    2.9K10

    2025-01-07:删除星号以后字典序最小的字符串。用go语言,给定一个字符串 s,其中可能包含任意数量的 ‘*‘ 字符。 我

    2025-01-07:删除星号以后字典序最小的字符串。用go语言,给定一个字符串 s,其中可能包含任意数量的 '*' 字符。 我们的目标是移除所有的 '*' 字符。...在字符串中只要还有至少一个 '*' 字符,我们可以执行以下操作: 1.删除最左侧的 '*' 字符。 2.同时,删除一个字典序最小的字符。如果存在多个字典序最小的字符,任选其一删除。...最终,我们需要返回在删除所有 '*' 字符后,剩余字符连接成的字典序最小的字符串。 1 <= s.length <= 100000。 s 只含有小写英文字母和 '*' 字符。...输入保证操作可以删除所有的 '*' 字符。 输入:s = "aaba*"。 输出:"aab"。 解释: 删除 '*' 号和它左边的其中一个 'a' 字符。...5.创建一个新的空字节切片 t,用于存储处理后的字符串。 6.遍历处理后的字符串 s,如果字符不是 '*',则将其添加到 t 中。 7.返回 t 组成的字符串。

    4410

    对比Excel,Python pandas删除数据框架中的列

    标签:Python与Excel,pandas 删除列也是Excel中的常用操作之一,可以通过功能区或者快捷菜单中的命令或者快捷键来实现。...准备数据框架 创建用于演示删除列的数据框架,仍然使用前面给出的“用户.xlsx”中的数据。 图1 .drop()方法 与删除行类似,我们也可以使用.drop()删除列。...唯一的区别是,在该方法中,我们需要指定参数axis=1。下面是.drop()方法的一些说明: 要删除单列:传入列名(字符串)。 删除多列:传入要删除的列的名称列表。...但是,如果要覆盖原始数据框架,则需要记住应包含参数inplace=True。 del 当我们只需要删除1或2列时效果最好。这种方法是最简单、最短的代码。...但是,如果需要删除多个列,则需要使用循环,这比.drop()方法更麻烦。 重赋值 当数据框架只有几列时效果最好;或者数据框架有很多列,但我们只保留一些列。

    7.2K20

    数据清洗要了命?这有一份手把手Python攻略

    之前我已经成功地从美国不同的城市中抓取并保存了大量的招聘信息,并将其导入到pandas数据框架中,如下图所示(你会发现绝大多数职位不包括工资信息): 为了完成清洗数据的任务,我有如下目标: 从数据中删除所有重复的招聘信息...在构建预测模型时,对字符串进行各种初步清洗以使之后的自然语言处理过程更容易。 删除重复的招聘信息 最开始,我从保存的csv文件中读取数据,并检查格式。...之后,我删除了所有重复行,并评估在抓取过程中我收集了多少不重复的内容。 仅在这个过程中,我的数据结构从128,289行减少到6,399行。...一开始,我去除了那些无关的字符: 虽然在使用这些数据前,我知道我需要从薪资数据中删除这些支付方式不同的字符串(如,“一年”、“一月”),但是我想要保留这些原始支付方式以供将来使用。...至此,我根据原始薪资数据的支付方式将职位信息和薪资信息分开。我也删除了与薪资支付方式有关的字符串。 之后,我定义了一个函数用来检测在一定范围内的薪资信息(通过在数据中查找连字符),并返回两个值的均值。

    1.5K30

    Python科学计算之Pandas

    此外,你可能需要知道你数据的一些基本的统计信息。Pandas让这件事变得非常简单。 ? 这将返回一个包含多种统计信息的表格,例如,计数,均值,标准方差等。它看起来像这样: ?...这样,我们可以设置一个(或多个)新的索引。 ? 这将会给’water_year’一个新的索引值。注意到列名虽然只有一个元素,却实际上需要包含于一个列表中。...这里,loc和iloc一样会返回你所索引的行数据的一个series。唯一的不同是此时你使用的是字符串标签进行引用,而不是数字标签。 ix是另一个常用的引用一行的方法。...正如loc和iloc,上述代码将返回一个series包含你所索引的行的数据。 既然ix可以完成loc和iloc二者的工作,为什么还需要它们呢?最主要的原因是ix有一些轻微的不可预测性。...你也可以输入任何你喜欢的东西,例如一个0。我们也可以使用函数dropna(how=’any’)来删除所有的带有NaN的行。然而在这个例子里,它可能会把所有东西都删了,所以我们没有这样做。 ?

    2.9K00

    数据科学 IPython 笔记本 7.7 处理缺失数据

    (请注意,有人建议未来向 Pandas 添加原生整数 NA;截至本文撰写时,尚未包含此内容。)...默认情况下,dropna()将删除包含空值的所有行: df.dropna() 0 1 2 1 2.0 3.0 5 或者,你可以沿不同的轴删除 NA 值; axis = 1删除包含空值的所有列: df.dropna...(axis='columns') 2 0 2 1 5 2 6 但这也会丢掉一些好的数据; 你可能更愿意删除全部为 NA 值或大多数为 NA 值的行或列。...这可以通过how或thresh参数来指定,这些参数能够精确控制允许通过的空值数量。 默认值是how ='any',这样任何包含空值的行或列(取决于axis关键字)都将被删除。...参数允许你为要保留的行/列指定最小数量的非空值: df.dropna(axis='rows', thresh=3) 0 1 2 3 1 2.0 3.0 5 NaN 这里删除了第一行和最后一行,因为它们只包含两个非空值

    4.1K20

    懂Excel轻松入门Python数据分析包pandas(十九):文本条件统计

    实际上我们可以直接对 性别 列分组统计即可: - 不多说了,代码语义简直与中文一样 - 这里唯一不好的地方是,需要通过 size 方法获得每个分组的记录数 需求2:不同的统计方法 刚刚是求人数,...以下是 Excel 的公式做法: 那么 pandas 的做法呢? 想必聪明的你一定大概知道怎么做,pandas 中求平均的是方法 mean: - 行3:同样语义非常清晰。....fare.mean() 恰好反映"票价的平均" 同样,简单分组即可一次获得所有分组的统计信息: - 按 sex 分组,求 票价 的 平均 需求3:非常规匹配 上面的条件都是完全符合,有时候我们需要统计有包含关系的条件..."住址是New York 的人数" Excel 的 xxifs 类函数公式都能支持通配符: - 前后用 * 包围内容,表示包含此内容即符合条件 在 pandas 中,由于筛选与统计是独立分开的,因此只需要知道怎么筛选...,那么此需求即可迎刃而解: - 行2:由于 住址 列是字符串类列,使用 .str 可访问字符串类型列的各种方法 - contains 判断列中是否包含指定内容。

    1.4K10

    懂Excel轻松入门Python数据分析包pandas(十九):文本条件统计

    实际上我们可以直接对 性别 列分组统计即可: - 不多说了,代码语义简直与中文一样 - 这里唯一不好的地方是,需要通过 size 方法获得每个分组的记录数 需求2:不同的统计方法 刚刚是求人数,...以下是 Excel 的公式做法: 那么 pandas 的做法呢? 想必聪明的你一定大概知道怎么做,pandas 中求平均的是方法 mean: - 行3:同样语义非常清晰。....fare.mean() 恰好反映"票价的平均" 同样,简单分组即可一次获得所有分组的统计信息: - 按 sex 分组,求 票价 的 平均 需求3:非常规匹配 上面的条件都是完全符合,有时候我们需要统计有包含关系的条件..."住址是New York 的人数" Excel 的 xxifs 类函数公式都能支持通配符: - 前后用 * 包围内容,表示包含此内容即符合条件 在 pandas 中,由于筛选与统计是独立分开的,因此只需要知道怎么筛选...,那么此需求即可迎刃而解: - 行2:由于 住址 列是字符串类列,使用 .str 可访问字符串类型列的各种方法 - contains 判断列中是否包含指定内容。

    1.2K20

    30 个小例子帮你快速掌握Pandas

    8.删除缺失值 处理缺失值的另一种方法是删除它们。“已退出”列中仍缺少值。以下代码将删除缺少任何值的行。...如果我们将groupby函数的as_index参数设置为False,则组名将不会用作索引。 16.带删除的重置索引 在某些情况下,我们需要重置索引并同时删除原始索引。...method参数指定如何处理具有相同值的行。first表示根据它们在数组(即列)中的顺序对其进行排名。 21.列中唯一值的数量 使用分类变量时,它很方便。我们可能需要检查唯一类别的数量。...29.根据字符串过滤 我们可能需要根据文本数据(例如客户名称)过滤观察结果(行)。我已经将虚构名称添加到df_new DataFrame中。 ? 让我们选择客户名称以Mi开头的行。...endswith函数根据字符串末尾的字符进行相同的过滤。 Pandas可以对字符串进行很多操作。

    10.8K10

    用过Excel,就会获取pandas数据框架中的值、行和列

    每种方法都有其优点和缺点,因此应根据具体情况使用不同的方法。 点符号 可以键入“df.国家”以获得“国家”列,这是一种快速而简单的获取列的方法。但是,如果列名包含空格,那么这种方法行不通。...图4 方括号表示法 它需要一个数据框架名称和一个列名,如下图所示:df[列名]。方括号内的列名是字符串,因此我们必须在其两侧使用引号。尽管它需要比点符号更多的输入,但这种方法在任何情况下都能工作。...因为我们用引号将字符串(列名)括起来,所以这里也允许使用带空格的名称。 图5 获取多列 方括号表示法使获得多列变得容易。语法类似,但我们将字符串列表传递到方括号中。...要获取前三行,可以执行以下操作: 图8 使用pandas获取单元格值 要获取单个单元格值,我们需要使用行和列的交集。...接着,.loc[[1,3]]返回该数据框架的第1行和第4行。 .loc[]方法 正如前面所述,.loc的语法是df.loc[行,列],需要提醒行(索引)和列的可能值是什么?

    19.2K60
    领券