首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

Pandas:按名称分组并取最近日期的行

Pandas是一个基于Python的数据分析工具,它提供了丰富的数据结构和数据分析功能,可以帮助用户进行数据清洗、转换、分析和可视化等操作。

对于给定的数据集,如果我们想按照某个列的名称进行分组,并且只保留每个分组中最近日期的行,可以使用Pandas的groupby函数和apply函数来实现。

首先,我们需要导入Pandas库:

代码语言:txt
复制
import pandas as pd

然后,假设我们有一个名为df的数据框,其中包含了以下几列:名称、日期和数值。我们可以按照名称进行分组,并取每个分组中日期最大的行:

代码语言:txt
复制
df.groupby('名称').apply(lambda x: x.loc[x['日期'].idxmax()])

上述代码中,groupby('名称')表示按照名称列进行分组,apply(lambda x: x.loc[x['日期'].idxmax()])表示对每个分组应用一个函数,该函数会返回每个分组中日期最大的行。

这样,我们就可以得到按名称分组并取最近日期的行的结果。

关于Pandas的更多详细信息和用法,您可以参考腾讯云的数据分析产品TDSQL和数据仓库产品CDW,它们提供了强大的数据处理和分析能力,适用于各种场景。

页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

Pandas_Study02

,即取e列中最近的一个不为NaN值来填充接下去的NaN值 df["e"].fillna(method = 'ffill',inplace=True) # 原理同上,只是取e列中最近的一个不为NaN值并且它的上一个数值是...NaN值 的值来填充接下去的NaN值 df["e"].fillna(method = 'bfill',inplace=True) # 对 gake 行操作,axis=0按行操作,取该行中最先出现的一个不为...NaN concat 函数 同样的可以指定是按行操作还是按列操作。...外连接,分左外连接,右外连接,全连接,左外连接是左表上的所有行匹配右表,正常能匹配上的取B表的值,不能的取空值,右外连接同理,全连接则是取左并上右表的的所有行,没能匹配上的用空值填充。...简单的按单列分组 # 按单列进行分组 dg = df0.groupby("fruit") # 打印查看按fruit分组后的每组组名,及详细信息 for n, g in dg: print "group_name

20510
  • 在Pandas中通过时间频率来汇总数据的三种常用方法

    当我们的数据涉及日期和时间时,分析随时间变化变得非常重要。Pandas提供了一种方便的方法,可以按不同的基于时间的间隔(如分钟、小时、天、周、月、季度或年)对时间序列数据进行分组。...在Pandas中,有几种基于日期对数据进行分组的方法。...Pandas中的resample方法可用于基于时间间隔对数据进行分组。它接收frequency参数并返回一个Resampler对象,该对象可用于应用各种聚合函数,如mean、sum或count。...然后使用重采样方法按月分组数据,并计算每个月的“sales”列的平均值。结果是一个新的DF,每个月有一行,还包含该月“sales”列的平均值。2. ...Pandas 中的 Grouper 函数提供了一种按不同时间间隔(例如分钟、小时、天、周、月、季度或年)对时间序列数据进行分组的便捷方法。

    6910

    首次公开,用了三年的 pandas 速查表!

    dd.loc['新访客', 2, '2019-06-22'].plot.barh() # loc 中按顺序指定索引内容 # 前100行, 不能指定行,如:df[100] df[:100] # 只取指定行...col进行分组的Groupby对象 df.groupby([col1,col2]) # 返回一个按多列进行分组的Groupby对象 df.groupby(col1)[col2] # 返回按列col1进行分组后...,列col2的均值 # 创建一个按列col1进行分组,并计算col2和col3的最大值的数据透视表 df.pivot_table(index=col1, values=[col2...col1分组的所有列的均值 # 按列将其他列转行 pd.melt(df, id_vars=["day"], var_name='city', value_name='temperature') # 交叉表是用于统计分组频率的特殊透视表...# 取时间范围,并取工作日 rng = pd.date_range(start="6/1/2016",end="6/30/2016",freq='B') # 重新定时数据频度,按一定补充方法 df.asfreq

    7.5K10

    Python进行数据分析Pandas指南

    下面是一个示例,展示如何使用Pandas进行数据分组和聚合:# 按类别分组并计算平均值grouped_data = data.groupby('category').mean()​# 显示分组后的数据print...接着,对清洗后的数据按产品类别进行分组,并计算了每个类别的总销售额。最后,使用Matplotlib创建了一个柱状图展示了不同产品类别的总销售额,并将处理后的数据导出到了一个新的CSV文件中。...# 按产品名称分组并计算总销售额product_sales = sales_data_cleaned.groupby('Product')['Sales'].sum()# 按销售额降序排序product_sales_sorted...# 按地区分组并计算总销售额region_sales = sales_data_cleaned.groupby('Region')['Sales'].sum()# 创建饼图显示销售额在不同地区的分布情况...= 销售额 - 成本)sales_data_cleaned['Profit'] = sales_data_cleaned['Sales'] - sales_data_cleaned['Cost']# 按产品名称分组并计算平均利润

    1.4K380

    Pandas三百题

    ('电商').sum()) 11 - 分组规则|通过内置函数 通过 positionName 的长度进行分组,并计算不同长度岗位名称的薪资均值 df.set_index('positionName')....) 在上一题的基础上,只取结果的交集 pd.concat([df1,df4],axis=1,join='inner') 16 - concat|横向拼接(取指定) 在 14 题基础上,只取包含 df1...11:32:16.625393') 2-时间生成|指定范围 使用pandas按天生成2021年1月1日至2021年9月1日的全部日期 pd.date_range('1/1/2021','9/11/2021...df1.info() 12 - 时间类型转换 将 df1 和 df2 的 日期 列转换为 pandas 支持的时间格式 df1['日期'] = pd.to_datetime(df1['日期']) df2...|值 将 df1 的索引设置为日期,将 df1 数据向后移动一天 df1.set_index(['日期']).shift(1) 25 - 日期重采样|日 -> 周 按周对 df1 进行重采样,保留每周最后一个数据

    4.8K22

    妈妈再也不用担心我忘记pandas操作了

    ', periods=df.shape[0]) # 增加一个日期索引 查看、检查数据: df.head(n) # 查看DataFrame对象的前n行 df.tail(n) # 查看DataFrame对象的最后...(col) # 返回一个按列col进行分组的Groupby对象 df.groupby([col1,col2]) # 返回一个按多列进行分组的Groupby对象 df.groupby(col1)[col2...] # 返回按列col1进行分组后,列col2的均值 df.pivot_table(index=col1, values=[col2,col3], aggfunc=max) # 创建一个按列col1进行分组...,并计算col2和col3的最大值的数据透视表 df.groupby(col1).agg(np.mean) # 返回按列col1分组的所有列的均值 data.apply(np.mean) # 对DataFrame...df.iloc[19, 7] 如果 df 是日期索引 + a,b,c 列名 loc locate df.loc[ '2017-01-01', 'A' ] 取数(行): one_row =

    2.2K31

    Pandas 的Merge函数详解

    pd.merge(customer, order) 默认情况下,merge函数是这样工作的: 将按列合并,并尝试从两个数据集中找到公共列,使用来自两个DataFrame(内连接)的列值之间的交集。...为了进一步理解,我们在合并之前添加日期来对数据进行分组。...在上面的DataFrame中可以看到Order数据集中的每一行都映射到Delivery数据集中的组。 merge_asof merge_asof 是一种用于按照最近的关键列值合并两个数据集的函数。...另一个可以使用的策略是就近策略。在这个策略中使用向后或向前策略;取绝对距离中最近的那个。如果有多个最接近的键或精确匹配,则使用向后策略。...这是因为order_date第一行与最近的日期delivery_date之间的距离大于一天。第二行成功合并,因为只差一天。

    32330

    Pandas库

    使用Z-Score等统计方法识别并移除异常值。 统一数据格式: 确保所有数据列具有相同的格式,例如统一日期格式、货币格式等。...Pandas提供了强大的日期时间处理功能,可以方便地从日期列中提取这些特征。...数据分组与聚合(Grouping and Aggregation) : 数据分组与聚合是数据分析中常用的技术,可以帮助我们对数据进行分组并计算聚合统计量(如求和、平均值等)。...例如,计算每个学生的平均成绩: average_score = df['成绩'].mean() print(average_score) 可以通过设置axis参数来指定是按列(0)还是按行(...强大的分组功能:Pandas提供了强大且灵活的分组(group by)功能,可以方便地对数据进行分组操作和统计分析。

    8410

    Pandas 秘籍:6~11

    操作步骤 读取大学数据集,按州分组,并显示分组总数。...为此,我们将按每位总裁分组,遍历每组,并分别绘制每个日期的批准等级: >>> from matplotlib import cm >>> fig, ax = plt.subplots(figsize=(...日期工具之间的区别 智能分割时间序列 使用仅适用于日期时间索引的方法 计算每周的犯罪数量 分别汇总每周犯罪和交通事故 按工作日和年份衡量犯罪 使用日期时间索引和匿名函数进行分组 按时间戳和另一列分组...在此步骤中,我们使用rolling方法根据最近五年数据的平均值来计算每年的新值。 例如,将 2011 年至 2015 年的预算中位数进行分组并取平均值。 结果是 2015 年的新值。...为此,我们需要找到自每个小组开始以来的每个时间点的成员总数。 我们有每个人加入每个小组的确切日期和时间。 在第 2 步中,我们按每周分组(偏移别名W)和聚会组,并使用size方法返回该周的签约数量。

    34K10

    使用 Python 对相似索引元素上的记录进行分组

    在 Python 中,可以使用 pandas 和 numpy 等库对类似索引元素上的记录进行分组,这些库提供了多个函数来执行分组。基于相似索引元素的记录分组用于数据分析和操作。...在本文中,我们将了解并实现各种方法对相似索引元素上的记录进行分组。 方法一:使用熊猫分组() Pandas 是一个强大的数据操作和分析库。...语法 grouped = df.groupby(key) 在这里,Pandas GroupBy 方法用于基于一个或多个键对数据帧中的数据进行分组。“key”参数表示数据分组所依据的一个或多个列。...生成的“分组”对象可用于分别对每个组执行操作和计算。 例 在下面的示例中,我们使用 groupby() 函数按“名称”列对记录进行分组。然后,我们使用 mean() 函数计算每个学生的平均分数。...groupby() 函数根据日期对事件进行分组,我们迭代这些组以提取事件名称并将它们附加到 defaultdict 中相应日期的键中。生成的字典显示分组记录,其中每个日期都有一个事件列表。

    23230

    pandas基础:使用Python pandas Groupby函数汇总数据,获得对数据更好地理解

    注意,在read_cvs行中,包含了一个parse_dates参数,以指示“Transaction Date”列是日期时间类型的数据,这将使以后的处理更容易。...533行/交易,有交易日期、购买说明、购买类别和金额(debit借方指现金流出/我们的支出,credit贷方指现金流入/信用卡支付)。...Day'] = df['TransactionDate'].dt.day_name() df['Month'] = df['TransactionDate'].dt.month day_name()返回日期的名称...在下面的示例中,我们首先按星期几对数据进行分组,然后指定要查看的列——“Debit(借方)”,最后对分组数据的“Debit”列执行操作:计数或求和。...,也允许使用正则元组,因此我们可以进一步简化上述内容: 图7 按多列分组 记住,我们的目标是希望从我们的支出数据中获得一些见解,并尝试改善个人财务状况。

    4.7K50

    esproc vs python 4

    A5:将amount按照倒序排序,并取前8名 A6: A.isect(),序列A成员可以为序列,产生所有子序列都有的成员组成的新序列。这里是求所有成员的交集。...,并求取sale_amt的和 按照m分组 初始化一个包含所有clerk_name的集合 循环分组,用初始集合与各个组的clerk_name一次求交集,并赋值给初始的集合,最终求得所有集合的交集。...这里表示根据分组子集A3新建二维表,其中~.m(1)表示取各组首行,~.m(-1)表示取各组尾行。...中不重新排序进行分组的方法,所以只能选择这种笨方法,又因为一直都是对比的pandas,所以也没有用python自带的IO读取方式来完成此题。...另外python中的merge函数不支持差集计算(或许其他函数支持),造成在第四例中特别麻烦。python pandas的dataframe结构是按列进行存储的,按行循环时就显得特别麻烦。

    1.9K10

    七步搞定一个综合案例,掌握pandas进阶用法!

    2.分组聚合 按照需求,需要计算每个城市每个子类别下产品的销售总量,因此需要按照city和sub_cate分组,并对amt求和。为计算占比,求得的和还需要和原始数据合在一块作为新的一列。...其中累计到第二行的时候已经达到了61.1%,超过了50%,因此最终只需取前两行即可。 5.目标筛选 经过了前面的数据准备,在这一步需要在每组内,筛选累计值达到50%的行,且最多三行。...这里需要对每组内按行进行遍历,用到了iterrows函数,并判断cum_pct与50%,group_rank与3的关系。我们自定义一个函数来实现。...6.分组拼接 在上一步筛选出了目标行,未达到最终目标,还需将每个分组内所有符合条件的产品名称拼接起来,并用逗号隔开。这里采用分组对字符串求和的方式来实现。...涉及到的操作依次有:数据读取,列名修改,字段分割,列子集筛选;分组求和(transform);分组排序(编号),分组排序;累计求和;按行迭代,数据拼接,条件筛选,分组拼接,apply/lambda函数;

    2.7K40

    超全的pandas数据分析常用函数总结:下篇

    ') # 默认取交集 data_new=pd.merge(data,data2,on='id',how='outer') # 取并集,没有值的地方填充NaN data.merge(data2...5.6 切割数据 对date字段的值依次进行分列,并创建数据表,索引值为data的索引列,列名称为year\month\day。...数据提取 下面这部分会比较绕: loc函数按标签值进行提取,iloc按位置进行提取pandas.DataFrame.loc() 允许输入的值: 单个标签,例如5或’a’,(请注意,5被解释为索引的标签,...6.2.2 用loc取不连续的多行 提取索引值为2和索引值为4的所有行,即提取第3行和第5行。 data.loc[[2,4]] 输出结果: ?...8.4 以department属性进行分组汇总并计算money的合计与均值 data.groupby("department")['money'].agg([len, np.sum, np.mean])

    5K20

    python数据分析——数据分类汇总与统计

    例如, DataFrame可以在其行(axis=0)或列(axis=1)上进行分组。然后,将一个函数应用(apply)到各个分组并产生一个新值。...语法 Pandas中的Groupby是一个强大的功能,用于将数据集按照指定的条件进行分组和聚合操作。它类似于SQL中的GROUP BY语句,可以对数据进行分组并对每个组进行统计、计算或其他操作。...按列分组 按列分组分为以下三种模式: df.groupby(col),返回一个按列进行分组的groupby对象; df.groupby([col1,col2]),返回一个按多列进行分组的groupby...示例 【例4】对groupby对象进行迭代,并打印出分组名称和每组元素。 关键技术:采用for函数进行遍历, name表示分组名称, group表示分组数据。...columns:设置交叉表的列索引。 values:可选参数,用于填充交叉表的数据。 rownames:可选参数,用于设置交叉表的行名称。 colnames:可选参数,用于设置交叉表的列名称。

    5610

    超全的pandas数据分析常用函数总结:下篇

    ') # 默认取交集 data_new=pd.merge(data,data2,on='id',how='outer') # 取并集,没有值的地方填充NaN data.merge(data2...5.6 切割数据 对date字段的值依次进行分列,并创建数据表,索引值为data的索引列,列名称为year\month\day。...数据提取 下面这部分会比较绕: loc函数按标签值进行提取,iloc按位置进行提取pandas.DataFrame.loc() 允许输入的值: 单个标签,例如5或’a’,(请注意,5被解释为索引的标签,...6.2.2 用loc取不连续的多行 提取索引值为2和索引值为4的所有行,即提取第3行和第5行。 data.loc[[2,4]] 输出结果: ?...8.4 以department属性进行分组汇总并计算money的合计与均值 data.groupby("department")['money'].agg([len, np.sum, np.mean])

    3.9K20
    领券