首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

NumPy 秘籍中文第二版:十、Scikits 的乐趣

使用 Pandas 估计股票收益的相关性 从 Statsmodels 中将数据作为 pandas 对象加载 重采样时间序列数据 简介 Scikits 是小型的独立项目,以某种方式与 SciPy 相关,但不属于...我们进行了 OLS 拟合,基本上为我们提供了铜价和消费量的统计模型。 另见 相关文档 重采样时间序列数据 在此教程中,您将学习如何使用 Pandas 对时间序列进行重新采样。...: df.plot() resampled.plot() plt.show() 原始时间序列的图如下: 重采样的数据具有较少的数据点,因此,生成的图更加混乱,如以下屏幕截图所示: 完整的重采样代码如下...然后,该索引用于创建 Pandas DataFrame。 然后,我们对时间序列数据进行了重新采样。...单个字符给出重采样频率,如下所示: 每天D 每月M 每年A resample()方法的how参数指示如何采样数据。 默认为计算平均值。 另见 相关 Pandas 文档

3K20

Pandas时序数据处理入门

作为一个几乎每天处理时间序列数据的人,我发现pandas Python包对于时间序列的操作和分析非常有用。 使用pandas操作时间序列数据的基本介绍开始前需要您已经开始进行时间序列分析。...因为我们的具体目标是向你展示下面这些: 1、创建一个日期范围 2、处理时间戳数据 3、将字符串数据转换为时间戳 4、数据帧中索引和切片时间序列数据 5、重新采样不同时间段的时间序列汇总/汇总统计数据 6...如果想要处理已有的实际数据,可以从使用pandas read_csv将文件读入数据帧开始,但是我们将从处理生成的数据开始。...04':'2018-01-06'] } 我们已经填充的基本数据帧为我们提供了每小时频率的数据,但是我们可以以不同的频率对数据重新采样,并指定我们希望如何计算新采样频率的汇总统计。...2、仔细跟踪时区-让其他人通过查看您的代码,了解您的数据所在的时区,并考虑转换为UTC或标准值,以保持数据的标准化。

4.1K20
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    Python时间序列分析苹果股票数据:分解、平稳性检验、滤波器、滑动窗口平滑、移动平均、可视化

    在进行投资和交易研究时,对于时间序列数据及其操作要有专业的理解。本文将重点介绍如何使用Python和Pandas帮助客户进行时间序列分析来分析股票数据。...hours = pd.date_range('2019-01-01', periods=24, freq='H') print(hours) pandas.DataFrame.asfreq 返回具有新频率的数据帧或序列...对于数据中缺失的时刻,将添加新行并用NaN填充,或者使用我们指定的方法填充。通常需要提供偏移别名以获得所需的时间频率。...我们经常需要降低(下采样)或增加(上采样)时间序列数据的频率。如果我们有每日或每月的销售数据,将其降采样为季度数据可能是有用的。或者,我们可能希望上采样我们的数据以匹配另一个用于进行预测的系列的频率。...并不是所有的时间序列必须呈现趋势或模式,它们也可能完全是随机的。 除了高频变动(如季节性和噪声)外,时间序列数据通常还会呈现渐变的变异性。通过在不同时间尺度上进行滚动平均可以很容易地可视化这些趋势。

    67600

    《利用Python进行数据分析·第2版》第11章 时间序列11.1 日期和时间数据类型及工具11.2 时间序列基础11.3 日期的范围、频率以及移动11.4 时区处理时区本地化和转换11.5 时期及其

    因此,你可以高效处理非常大的时间序列,轻松地进行切片/切块、聚合、对定期/不定期的时间序列进行重采样等。有些工具特别适合金融和经济应用,你当然也可以用它们来分析服务器日志数据。...pandas用NumPy的datetime64数据类型以纳秒形式存储时间戳: In [45]: ts.index.dtype Out[45]: dtype('<M8[ns]') DatetimeIndex...幸运的是,pandas有一整套标准时间序列频率以及用于重采样、频率推断、生成固定频率日期范围的工具。...各时间段都是半开放的。一个数据点只能属于一个时间段,所有时间段的并集必须能组成整个时间帧。在用resample对数据进行降采样时,需要考虑两样东西: 各区间哪边是闭合的。...对那些使用时期索引的数据进行重采样与时间戳很像: In [228]: frame = pd.DataFrame(np.random.randn(24, 4), .....:

    6.6K60

    Pandas处理时间序列数据的20个关键知识点

    时间序列数据有许多定义,它们以不同的方式表示相同的含义。一个简单的定义是时间序列数据包括附加到顺序时间点的数据点。 时间序列数据的来源是周期性的测量或观测。许多行业都存在时间序列数据。...1.不同形式的时间序列数据 时间序列数据可以是特定日期、持续时间或固定的自定义间隔的形式。 时间戳可以是给定日期的一天或一秒,具体取决于精度。...用取样函数重新采样 时间序列数据的另一个常见操作是重采样。根据任务的不同,我们可能需要以更高或更低的频率重新采样数据。 Resample创建指定内部的组(或容器),并允许您对组进行合并。...滚动意味着创建一个具有指定大小的滚动窗口,并对该窗口中的数据执行计算,当然,该窗口将滚动数据。下图解释了滚动的概念。 值得注意的是,计算开始时整个窗口都在数据中。...S.rolling(3).mean()[:10] 结论 我们已经全面介绍了用Pandas进行时间序列分析。值得注意的是,Pandas提供了更多的时间序列分析。 感谢您的阅读。

    2.7K30

    金融数据分析与挖掘具体实现方法 -1

    我们需要自己去生成计算不同频率的数据 4.3 案例:股票K线数据重采样 股票方面的基础知识差不多了,接下来我们做个将日k线图转换成周k线图的案例吧!...当中的某个股票的行情数据 将索引转换成DatetimeIndex类型 对不同指标进行重采样 stock_day = pd.read_csv("..../data/stock_day/stock_day.csv") stock_day = stock_day.sort_index() # 对每日交易数据进行重采样 (频率转换) stock_day.index...来转换 3、通过pd.DatetimeIndex进行转换 pd.DatetimeIndex(date) 知道了时间序列类型,所以我们可以用这个当做索引,获取数据 5.4 Pandas的基础时间序列结构...,它的比重以平均线的长度设定,愈近期的收市价,对市况影响愈重要。

    1.5K41

    手把手教你用Python玩转时序数据,从采样、预测到聚类丨代码

    可以根据这些数据,生成一些图表分析。 ? 当然,因为我们考虑的数据主要是时间和用电量两个维度,所以可以把其他的维度删掉。 重采样 我们先从重采样开始。...重采样意味着改变时序数据中的时间频率,在特征工程中这个技能非常有用,给监督学习模型补充一些结构。 依靠pandas进行重采样的方法类似groupby,通过下面的例子,可以更方便的理解。...首先,需要把采样周期变成每周: · data.resample() 用来重采样数据帧里的电量(kWh)那一列。 · The ‘W’ 表示我们要把采样周期变为每周(week)。...· sum()用来求得这段时间里的电量之和。 ? 当然,我们也可以依葫芦画瓢把采样周期变成每天。 ? ? pandas里内置了很多重采样的选项,比如不同的时间段: ? 还有不同的采样方式: ?...为了实现预测功能,我们创建未来数据帧,设置预测未来多少时间和频率,然后Prophet就可以开始预测了。 这里设置的是预测两周,以天为单位。 ? 搞定了,可以预测未来两个月的家庭用电量了。 ?

    1.4K20

    音视频基础

    二、不同音频编码器的音频编码质量比较 OPUS对不同的网络质量(窄带、宽带、超宽带、全带)都有对应的码流选择三、不同音频编码器的音频编码码率 不同编码器在不同的延时对码率的支持范围。...(1〉从设备中采集的音频数据与编码器要求的数据格式不一致y(2〉扬声器要求的音频数据与要播放的音频数据不一致,(3)更方便运算〈回声消除时,将多通道重采样成单通道方便运算。)...重采样的步骤:(1)创建重采样上下文,(2〉设置参数;(3)初始化重采样;(4)进行重采样。...一般是 一个I,3个B, 1个P Sps是设置GOP的参数, pps设置单个图像的参数 2.3.2编码技术 H264压缩技术是一个技术合集.H264进行编解码是以宏块为单位进行处理的,以像素为单位效率太低了...参考帧:后面的帧要参考前面的帧进行压缩。 运动估计:帧间压缩最重要的技术.指的是一个过程,通过宏块匹配的方法,最终找到运动的矢量。

    2.4K31

    气象编程 |Pandas处理时序数据

    时间序列分析的目的是通过找出样本内时间序列的统计特性和发展规律性,构建时间序列模型,进行样本外预测。 现在,一起来学习用Pandas处理时序数据。 ? 本文目录 1....重采样 3.1. resample对象的基本操作 3.2. 采样聚合 3.3. 采样组的迭代 4. 窗口函数 4.1....三、重采样 所谓重采样,就是指resample函数,它可以看做时序版本的groupby函数 3.1. resample对象的基本操作 采样频率一般设置为上面提到的offset字符 df_r = pd.DataFrame...问题 【问题一】 如何对date_range进行批量加帧操作或对某一时间段加大时间戳密度? ? 【问题二】 如何批量增加TimeStamp的精度?...【练习二】 继续使用上一题的数据,请完成下列问题: (a)以50天为窗口计算滑窗均值和滑窗最大值(min_periods设为1) ?

    4.3K51

    Pandas 学习手册中文第二版:11~15

    实体往往代表现实世界中的事物,例如一个人,或者在物联网中,是一个传感器。 然后,使用单个数据帧对每个特定实体及其度量进行建模。 通常需要在模型中的实体上和实体之间执行各种任务。...仅仅因为不同的源对相同类型的实体进行不同的建模,可能还需要将存储在一个模型中的数据重塑为另一个模型。 在本章中,我们将研究这些操作,这些操作使我们可以在模型中合并,关联和重塑数据。...新时间序列中的数据与旧数据一致,并可能导致许多NaN值。 使用填充方法可以部分解决此问题,但是其填充适当信息的能力受到限制。 重采样的不同之处在于,它不会执行纯对齐。...这涉及学习 Pandas 的许多功能,包括日期和时间对象,表示时间间隔和周期的时间变化,以及对时间序列数据执行多种类型的操作,例如频率转换,重采样和计算滚动窗口。...要计算每月的回报率,我们可以使用一些 Pandas 魔术,然后对原始的每日回报进行重新采样。

    3.4K20

    手把手教你用Python玩转时序数据,从采样、预测到聚类丨代码

    可以根据这些数据,生成一些图表分析。 ? 当然,因为我们考虑的数据主要是时间和用电量两个维度,所以可以把其他的维度删掉。 重采样 我们先从重采样开始。...重采样意味着改变时序数据中的时间频率,在特征工程中这个技能非常有用,给监督学习模型补充一些结构。 依靠pandas进行重采样的方法类似groupby,通过下面的例子,可以更方便的理解。...首先,需要把采样周期变成每周: · data.resample() 用来重采样数据帧里的电量(kWh)那一列。 · The ‘W’ 表示我们要把采样周期变为每周(week)。...· sum()用来求得这段时间里的电量之和。 ? 当然,我们也可以依葫芦画瓢把采样周期变成每天。 ? ? pandas里内置了很多重采样的选项,比如不同的时间段: ? 还有不同的采样方式: ?...为了实现预测功能,我们创建未来数据帧,设置预测未来多少时间和频率,然后Prophet就可以开始预测了。 这里设置的是预测两周,以天为单位。 ? 搞定了,可以预测未来两个月的家庭用电量了。 ?

    2.2K30

    ICCV2021|STMN:双记忆网络提升视频行人ReID性能

    ,该文针对视频行人重识别任务提出了一种双记忆网络,并在多个数据集上达到SOTA性能。...01动机 基于视频的行人重识别(reID)主要通过多个摄像头的数据来检索与当前查询人员身份一致的行人视频片段。...,随后使用输入的行人特征 减去该聚合特征达到抑制背景噪声的作用,具体过程如下: 2.2 时间记忆模块 由于使用空间记忆模块对行人特征进行处理时,是独立的一帧一帧进行操作,作者认为这样处理无法捕捉视频序列中的时序上下文信息...03实验效果 本文在三个具有代表性的视频行人重识别数据集上进行了实验,分别是MARS,DukeMTMC-VideoReID和LS-VID。...个帧序列对记忆模块进行训练和更新。

    1.2K20

    Pandas 学习手册中文第二版:1~5

    将数据分组到通用篮子中 聚合具有相似特征的数据 应用函数计算含义或执行转换 查询和切片来探索整体 重组为其他形式 为不同类型的数据建模,例如类别,连续,离散和时间序列 将数据重新采样到不同的频率 存在许多数据处理工具...推断统计 推断统计与描述性统计的不同之处在于,推断统计试图从数据推断得出结论,而不是简单地对其进行概括。...-2e/img/00119.jpeg)] Pandas 已经对每个序列中每个变量的测量值进行了匹配,将这些值相加,然后在一个简洁的语句中将每个变量的总和返回给我们。...代替单个值序列,数据帧的每一行可以具有多个值,每个值都表示为一列。 然后,数据帧的每一行都可以对观察对象的多个相关属性进行建模,并且每一列都可以表示不同类型的数据。...这种探索通常涉及对DataFrame对象的结构进行修改,以删除不必要的数据,更改现有数据的格式或从其他行或列中的数据创建派生数据。 这些章节将演示如何执行这些强大而重要的操作。

    8.3K10

    pandas 时序统计的高级用法!

    本次介绍pandas时间统计分析的一个高级用法--重采样。以下是内容展示,完整数据、代码和500页图文可戳《pandas进阶宝典V1.1.6》进行了解。...重采样指的是时间重采样,就是将时间序列从一个频率转换到另一个频率上,对应数据也跟着频率进行变化。比如时间序列数据是以天为周期的,通过重采样我们可以将其转换为按分钟、小时、周、月、季度等等的其他周期上。...对于dataframe而言,如不想对索引重采样,可以通过on参数选择一个column列代替索引进行重采样操作。...,以下对多个变量进行不同的聚合函数,其中也可以自定义函数。...transform()函数的使用方法可参考pandas transform 数据转换的 4 个常用技巧! 以下对C_0变量进行采样分组内的累加和排序操作。

    45240

    Pandas 秘籍:6~11

    Pandas 显示的多重索引级别与单级别的列不同。 除了最里面的级别以外,屏幕上不会显示重复的索引值。 您可以检查第 1 步中的数据帧以进行验证。 例如,DIST列仅显示一次,但它引用了前两列。...最典型地,时间在每个数据点之间平均间隔。 Pandas 在处理日期,在不同时间段内进行汇总,对不同时间段进行采样等方面具有出色的功能。...当数据帧具有DatetimeIndex时,将出现更多选择和切片的机会。 准备 在本秘籍中,我们将使用部分日期匹配来选择和切片带有DatetimeIndex的数据帧。.../img/00275.jpeg)] 另见 Pandas 重采样的官方文档 所有锚定偏移量的表 分别汇总每周犯罪和交通事故 丹佛犯罪数据集将所有犯罪和交通事故汇总在一个表格中,并通过二进制列IS_CRIME...准备 在本秘籍中,我们将展示对具有DatetimeIndex的数据帧使用groupby方法的多功能性。

    34K10

    LIR-LIVO:一种轻量级、鲁棒的激光雷达视觉惯性里程计,具备对光照变化具有适应性的深度特征

    它仅在滑动窗口内保留有限数量的历史关键帧,用于构建重投影误差进行优化。此外,优化的特征点深度分布进一步提升了位姿估计的精度。...视觉前端采用 SuperPoint 和 LightGlue 进行特征提取与匹配,并利用激光雷达点云直接关联特征点深度。在此过程中对特征点的深度进行筛选,以确保深度分布的均匀性。...如图 1 所示,通过拆解原始LiDAR扫描并重构以匹配相机时间戳,可实现LiDAR帧与相机帧的同步,从而在后续处理中顺利进行基于 LiDAR 和视觉数据的状态更新。 图 3. 扫描重组过程。...然后,利用 3D K-D树 进行最近邻搜索,以找到最接近的 5个LiDAR点。接着对这些点进行有效性检查,确保其满足点到平面的残差阈值(0.05m),从而避免错误匹配。...深度分布影响 在 NTU-VIRAL 数据集上进行消融实验,以评估 视觉特征点的深度分布均匀性 对系统性能的影响: 在每帧图像中,我们对深度关联的特征点进行排序,并均匀下采样至 50 个点。

    1300

    时间序列 | 从开始到结束日期自增扩充数据

    患者根据每天的医嘱单上的内容按时按量服用药物,直至医生停止患者用药。 由于是重复内容,系统为节约存储空间,并未记录每天自动创建的重复医嘱单。但在做数据分析时,需要进行临床场景重现。...至此医嘱单内容已创建完毕,接下来需要创建自增的时间序列,并以时间序列做主表,以医嘱单内容表做从表,进行表与表之间的连接。...---- 方法二,时间戳重采样 既然方法一已经提到用时间序列内pd.date_range() 方法,何不直接用升采用及插值的方法完成。...需要了解pandas里使用时间序列处理数据问题,可移步至《时间序列》。...升采样及插值 时间戳重采样,resampling的填充和插值方式跟fillna和reindex的一样 >>> date_range_df = frame.resample('D').bfill() >>

    3K20

    Pandas处理时序数据(初学者必会)!

    时序数据可以是时期数,也可以时点数。 时间序列分析的目的是通过找出样本内时间序列的统计特性和发展规律性,构建时间序列模型,进行样本外预测。 现在,一起来学习用Pandas处理时序数据。 ?...type(pd.to_datetime(['2020/1/1','2020/1/2'])) pandas.core.indexes.datetimes.DatetimeIndex 对于DataFrame...三、重采样 所谓重采样,就是指resample函数,它可以看做时序版本的groupby函数 3.1. resample对象的基本操作 采样频率一般设置为上面提到的offset字符 df_r = pd.DataFrame...问题 【问题一】 如何对date_range进行批量加帧操作或对某一时间段加大时间戳密度? ? 【问题二】 如何批量增加TimeStamp的精度?...【练习二】 继续使用上一题的数据,请完成下列问题: (a)以50天为窗口计算滑窗均值和滑窗最大值(min_periods设为1) ?

    3.3K30

    Pandas 2.2 中文官方教程和指南(二十一·三)

    这将包括在包含日期上匹配时间: 警告 使用单个字符串对DataFrame行进行索引(例如frame[dtstring])已在 pandas 1.2.0 中弃用(由于不确定是索引行还是选择列而存在歧义),...这将包括在包含日期的匹配时间: 警告 使用单个字符串通过 getitem(例如 frame[dtstring])对 DataFrame 行进行索引在 pandas 1.2.0 中已弃用(因为它存在将行索引与列选择混淆的歧义...重采样 pandas 在频率转换期间执行重采样操作(例如,将秒数据转换为 5 分钟数据)具有简单、强大和高效的功能。这在金融应用中非常常见,但不限于此。...ts.resample("5Min").sum() Out[292]: 2012-01-01 25103 Freq: 5min, dtype: int64 resample 函数非常灵活,允许您指定许多不同的参数来控制频率转换和重采样操作...简单地对稀疏系列进行上采样可能会产生大量中间值。当您不想使用填充这些值的方法时,例如fill_method为None,那么中间值将被填充为NaN。

    20200
    领券