首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

Pandas to parquet不是放入文件系统,而是在变量中获取结果文件的内容

Pandas是一个强大的数据分析工具,而Parquet是一种高效的列式存储格式。当我们使用Pandas读取数据后,可以将数据以Parquet格式保存在变量中,而不是直接放入文件系统中。

Parquet的列式存储结构使得数据的读写更加高效,特别适用于大规模数据分析和处理。相比于其他存储格式,Parquet具有以下优势:

  1. 节省存储空间:Parquet使用编码和压缩技术,能够显著减小数据占用的磁盘空间。这对于存储大规模数据集非常有利。
  2. 快速读取:由于列式存储的特点,Parquet可以仅读取需要的列,而无需读取整个数据集。这使得数据查询和分析更加高效。
  3. 兼容性强:Parquet格式被广泛支持,可以与许多数据处理工具和框架集成,例如Apache Spark、Apache Hadoop等。
  4. 数据类型丰富:Parquet支持各种数据类型,包括数值、字符串、日期、时间戳等,能够满足不同数据分析和处理场景的需求。

应用场景:Pandas to Parquet在以下场景中有广泛应用:

  1. 大规模数据分析:当需要处理大规模的数据集时,使用Parquet格式可以提高数据读取和查询的效率,加快分析过程。
  2. 数据仓库:Parquet的高压缩率和快速读取特性使其成为构建数据仓库的理想选择。可以将数据以Parquet格式存储,以支持快速的数据分析和查询。

腾讯云相关产品和产品介绍链接地址:

腾讯云提供了一系列与云计算和大数据处理相关的产品和服务,以下是一些相关的产品和链接地址供参考:

  1. 腾讯云对象存储(COS):提供高可用、高扩展的云端存储服务,可用于存储和管理Parquet格式的数据。详情请参考:https://cloud.tencent.com/product/cos
  2. 腾讯云数据仓库(CDW):提供完全托管的数据仓库服务,支持快速的数据导入、数据分析和查询。详情请参考:https://cloud.tencent.com/product/cdw

请注意,以上仅是一些示例,并非全面而详尽的产品推荐。在实际应用中,具体的产品选择应根据实际需求和场景来进行评估和决策。

页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

PySpark实战指南:大数据处理与分析终极指南【上进小菜猪大数据】

通过PySpark,我们可以利用Spark分布式计算能力,处理和分析海量数据集。 数据准备 进行大数据处理和分析之前,首先需要准备数据。数据可以来自各种来源,例如文件系统、数据库、实时流等。...PySpark支持各种数据源读取,如文本文件、CSV、JSON、Parquet等。...这些分布式文件系统能够存储和管理大规模数据集,并提供高可靠性和可扩展性。...使用PySpark流处理模块(Spark Streaming、Structured Streaming),可以从消息队列、日志文件、实时数据源等获取数据流,并进行实时处理和分析。...通过掌握这些技术,您可以利用PySpark大数据领域中处理和分析海量数据,从中获取有价值洞察和决策支持。

2.8K31

更高效利用Jupyter+pandas进行数据分析,6种常用数据格式效率对比!

使用Python进行数据分析时,Jupyter Notebook是一个非常强力工具,在数据集不是很大情况下,我们可以使用pandas轻松对txt或csv等纯文本格式数据进行读写。...将五个随机生成具有百万个观测值数据集转储到CSV,然后读回内存以获取平均指标。并且针对具有相同行数20个随机生成数据集测试了每种二进制格式。...同时使用两种方法进行对比: 1.将生成分类变量保留为字符串 2.执行任何I/O之前将其转换为pandas.Categorical数据类型 1.以字符串作为分类特征 下图显示了每种数据格式平均I/O...2.对特征进行转换 在上一节,我们没有尝试有效地存储分类特征,而是使用纯字符串,接下来我们使用专用pandas.Categorical类型再次进行比较。 ?...因为只要在磁盘上占用一点空间,就需要额外资源才能将数据解压缩回数据帧。即使文件持久性存储磁盘上需要适度容量,也可能无法将其加载到内存。 最后我们看下不同格式文件大小比较。

2.9K21
  • 更高效利用Jupyter+pandas进行数据分析,6种常用数据格式效率对比!

    使用Python进行数据分析时,Jupyter Notebook是一个非常强力工具,在数据集不是很大情况下,我们可以使用pandas轻松对txt或csv等纯文本格式数据进行读写。...将五个随机生成具有百万个观测值数据集转储到CSV,然后读回内存以获取平均指标。并且针对具有相同行数20个随机生成数据集测试了每种二进制格式。...同时使用两种方法进行对比: 1.将生成分类变量保留为字符串 2.执行任何I/O之前将其转换为pandas.Categorical数据类型 1.以字符串作为分类特征 下图显示了每种数据格式平均I/O...2.对特征进行转换 在上一节,我们没有尝试有效地存储分类特征,而是使用纯字符串,接下来我们使用专用pandas.Categorical类型再次进行比较。 ?...因为只要在磁盘上占用一点空间,就需要额外资源才能将数据解压缩回数据帧。即使文件持久性存储磁盘上需要适度容量,也可能无法将其加载到内存。 最后我们看下不同格式文件大小比较。

    2.4K30

    分享几款Python做数据分析必须掌握三方库!

    (非Pandas|Numpy) 一、聊聊Parquet文件格式(pyarrow) 在此之前为大家介绍普及下,除了传统数据存储格式(媒介)外,当下被公认数据存储格式Parquet。...列式存储:快速数据读取操作在数据分析工作负载至关重要,列式存储是快速读取关键要求。 3. 与语言无关:开发人员可以使用不同编程语言来操作 Parquet 文件数据。 4....有了它,处理大规模数据再也不是难题。 如果想要通过Python保存数据为parquet格式,我们需要额外安装一个Python库:pyarrow,除此之外还要结合Pandas使用,有两种方式进行保存。...以前使用pandas时候,只关注了csv、xls等格式,现在再回头看其实Pandas一直支持parquet格式。读取parquet文件同样使用pandas即可。...代码运行后,Plotly会自动本地开启一个端口为52586网页服务,自动打开网页如下: 从Parquet数据到3D知识图谱构建过程,如果数据量过大时,直接加载到内存可能会导致性能问题。

    20110

    Cloudera机器学习NVIDIA RAPIDS

    介绍 本系列上一篇博客文章,我们介绍了Cloudera Machine Learning(CML)项目中利用深度学习步骤。...创建具有8核、16GB内存和1个GPU会话 使用以下命令从终端会话安装需求: code pip install -r requirements.txt 获取数据集 为了使代码正常工作,应将CSV格式数据放入数据子文件...数据摄取 原始数据位于一系列CSV文件。我们首先将其转换为Parquet格式,因为大多数数据湖都存在于存储有Parquet文件对象存储。...这将以正确数据类型打开CSV,然后将它们另存为Parquet,保存在“ raw_data”文件。 浏览数据集,有数字列、分类列和布尔列。...但是,`StratifiedKFold`计算上并不是很昂贵,因此我们不在GPU上运行也没关系。生成索引也可以按照常规通过iloc直接与cuDF数据帧一起使用。

    94720

    收藏 | 10个数据科学家常犯编程错误(附解决方案)

    以下是我经常看到10大常见错误,本文将为你相关解决方案: 不共享代码引用数据 对无法访问路径进行硬编码 将代码与数据混合 Git中和源码一起提交数据 编写函数而不是DAG 写for循环 不编写单元测试...不共享代码引用数据 数据科学需要代码和数据。因此,为了让别人可以复现你结果,他们需要能够访问到数据。道理很简单,但是很多人忘记分享他们代码数据。...尝试共享数据时,很容易将数据文件添加到版本控制。当文件很小时是可以,但是git并没有针对数据进行优化,尤其是大文件。...编写函数而不是DAG 关于数据部分已经够多了,现在来谈一谈实际代码!在学习编程时最先学习内容之一就是函数,数据科学代码通常由一系列线性运行函数组成。...jupyter notebook助长了上述提到许多不良编程习惯,尤其是: 把所有文件保存在一个目录 编写从上至下运行代码,而不是DAG 没有对代码进行模块化 很难调试 代码和输出混在一个文件 没有很好版本控制

    82130

    独家 | 10个数据科学家常犯编程错误(附解决方案)

    以下是我经常看到10大常见错误,本文将为你相关解决方案: 不共享代码引用数据 对无法访问路径进行硬编码 将代码与数据混合 Git中和源码一起提交数据 编写函数而不是DAG 写for循环 不编写单元测试...不共享代码引用数据 数据科学需要代码和数据。因此,为了让别人可以复现你结果,他们需要能够访问到数据。道理很简单,但是很多人忘记分享他们代码数据。...尝试共享数据时,很容易将数据文件添加到版本控制。当文件很小时是可以,但是git并没有针对数据进行优化,尤其是大文件。...编写函数而不是DAG 关于数据部分已经够多了,现在来谈一谈实际代码!在学习编程时最先学习内容之一就是函数,数据科学代码通常由一系列线性运行函数组成。...jupyter notebook助长了上述提到许多不良编程习惯,尤其是: 把所有文件保存在一个目录 编写从上至下运行代码,而不是DAG 没有对代码进行模块化 很难调试 代码和输出混在一个文件 没有很好版本控制

    85420

    Pandas 2.2 中文官方教程和指南(十·二)

    你可以程序中使用这个方法来获取对象行数。...对于其他驱动程序,请注意 pandas 从查询输出推断列 dtype,而不是通过查找物理数据库模式数据类型。例如,假设userid是表整数列。...注意 导入分类数据时,Stata 数据文件变量值不会被保留,因为Categorical变量始终使用介于-1和n-1之间整数数据类型,其中n是类别数。...指定chunksize或使用iterator=True以获取读取器对象(XportReader或SAS7BDATReader),以逐步读取文件。读取器对象还具有包含有关文件及其变量其他信息属性。...### 逐块迭代文件 假设您希望惰性地迭代(可能非常大文件,而不是将整个文件读入内存,例如以下内容: ```py In [224]: df = pd.DataFrame(np.random.randn

    29300

    (数据科学学习手札161)高性能数据分析利器DuckDBPython使用

    /demo_data.parquet')   针对两种格式文件,分别比较默认情况下DuckDB、pandas、polars读取速度: csv格式 parquet格式   可以看到,无论是对比pandas...,下面是一些简单例子:   比较一下与pandas、polars之间执行相同任务耗时差异,DuckDB依旧是碾压级存在: 2.3 计算结果转换 DuckDB默认自带文件写出接口比较少,依旧是只针对...csv、parquet等主流格式具有相应write_parquet()、write_csv()可以直接导出文件,但是针对Python,DuckDB提供了多样化数据转换接口,可以快捷高效地将计算结果转换为...parquet等格式,那么直接使用DuckDB文件写出接口,性能依旧是非常强大: csv格式 parquet格式   更多有关DuckDBPython应用内容,请移步官方文档(https://...以上就是本文全部内容,欢迎评论区与我们进行讨论~

    71230

    性能碾压pandas、polars数据分析神器来了

    ,下面是一些简单例子: 比较一下与pandas、polars之间执行相同任务耗时差异,DuckDB依旧是碾压级存在: 2.3 计算结果转换 DuckDB默认自带文件写出接口比较少,依旧是只针对csv...、parquet等主流格式具有相应write_parquet()、write_csv()可以直接导出文件,但是针对Python,DuckDB提供了多样化数据转换接口,可以快捷高效地将计算结果转换为Python...对象、pandas数据框、polars数据框、numpy数组等常用格式: 基于此,就不用担心通过DuckDB计算数据结果不好导出为其他各种格式文件了~ 如果你恰好需要转出为csv、parquet等格式...,那么直接使用DuckDB文件写出接口,性能依旧是非常强大: csv格式 parquet格式 更多有关DuckDBPython应用内容,请移步官方文档(https://duckdb.org/docs...以上就是本文全部内容,欢迎评论区与我们进行讨论~

    96120

    计算引擎之下,存储之上 - 数据湖初探

    我们都知道一个大数据处理系统分为: 分布式文件系统:HDFS,S3 基于一定文件格式将文件存储分布式文件系统Parquet,ORC, ARVO 用来组织文件元数据系统:Metastore 处理文件计算引擎...Delta Lake 其实只是一个 Lib 库,不是一个 service,不需要单独部署,而是直接依附于计算引擎,但目前只支持 spark 引擎,使用过程中和 parquet 唯一区别是把 format...三、Apache Hudi Hudi 是什么 一般来说,我们会将大量数据存储到HDFS/S3,新数据增量写入,而旧数据鲜有改动,特别是经过数据清洗,放入数据仓库场景。...此存储类型下,写入数据非常昂贵,而读取成本没有增加,所以适合频繁读工作负载,因为数据集最新版本列式文件始终可用,以进行高效查询。...更新记录时,更新到增量文件(avro),然后进行异步(或同步)compaction,创建列式文件parquet新版本。

    1.6K40

    Pandas DataFrame 数据存储格式比较

    Pandas 支持多种存储格式,本文中将对不同类型存储格式下Pandas Dataframe读取速度、写入速度和大小进行测试对比。...Pandas Dataframe。...我们对测试结果做一个简单分析 CSV 未压缩文件大小最大 压缩后尺寸很小,但不是最小 CSV读取速度和写入速度是最慢 Pickle 表现得很平均 但压缩写入速度是最慢 Feather 最快读写速度...,文件大小也是中等,非常平均 ORC 所有格式中最小 读写速度非常快,几乎是最快 Parquet 总的来说,快速并且非常小,但是并不是最快也不是最小。...ORC作为传统大数据处理格式(来自Hive)对于速度和大小优化是做最好Parquet比ORC更大、更慢,但是它却是速度和大小取得了最佳平衡,并且支持他生态也多,所以需要处理大文件时候可以优先选择

    21530

    Pandas vs Spark:数据读取篇

    csv文件,而后再用read_csv获取。...read_table:可用于读取txt文件,使用频率不高; read_parquetParquet是大数据标志性文件Pandas也对其予以支持,但依赖还是很复杂; 另外,还有ocr和pickle...等文件类型,其中OCR是Hive标准数据文件类型,与Parquet类似,也是列式存储,虽然Pandas也提供支持,但既然是大数据,其实与Pandas已经关系不大了;而pickle则是python中常用序列化存储格式...与Pandas接口名称一个显著区别是:Spark采用二级接口方式,即首先调用read属性获取读接口类,然后再区分数据源细分为各种类型;而Pandas则是直接提供了read_各数据类型API。...仍然按照使用频率来分: spark.read.parquet:前面已经提到,parquet是大数据标准文件存储格式,也是Apache顶级项目,相较于OCR而言,Parquet更为流行和通用。

    1.8K30

    Pandas DataFrame 数据存储格式比较

    Pandas 支持多种存储格式,本文中将对不同类型存储格式下Pandas Dataframe读取速度、写入速度和大小进行测试对比。...Pandas Dataframe。...我们对测试结果做一个简单分析 CSV 未压缩文件大小最大 压缩后尺寸很小,但不是最小 CSV读取速度和写入速度是最慢 Pickle 表现得很平均 但压缩写入速度是最慢 Feather 最快读写速度...,文件大小也是中等,非常平均 ORC 所有格式中最小 读写速度非常快,几乎是最快 Parquet 总的来说,快速并且非常小,但是并不是最快也不是最小 总结 从结果来看,我们应该使用ORC或Feather...ORC作为传统大数据处理格式(来自Hive)对于速度和大小优化是做最好Parquet比ORC更大、更慢,但是它却是速度和大小取得了最佳平衡,并且支持他生态也多,所以需要处理大文件时候可以优先选择

    41120

    干货 | 再来聊一聊 Parquet 列式存储格式

    圈内有这样一句话流传:如果说 HDFS 是大数据时代文件系统事实标准,Parquet 就是大数据时代存储格式事实标准。...关于映射下推与谓词下推: 映射下推,这是列式存储最突出优势,是指在获取数据时只需要扫描需要列,不用全部扫描。 谓词下推,是指通过将一些过滤条件尽可能最底层执行以减少结果集。...对象模型层:定义如何读取 Parquet 文件内容,这一层转换包括 Avro、Thrift、Protocal Buffer 等对象模型/序列化格式、Hive serde 等适配。...例如 parquet-mr 项目里 parquet-pig 项目就是负责把内存 Pig Tuple 序列化并按列存储成 Parquet 格式,以及反过来把 Parquet 文件数据反序列化成 Pig...这里需要注意是 Avro, Thrift, Protocol Buffer 等都有他们自己存储格式,但是 Parquet 并没有使用他们,而是使用了自己 parquet-format 项目里定义存储格式

    3.5K40

    并行计算框架Polars、Dask数据处理性能对比

    Pandas 2.0发布以后,我们发布过一些评测文章,这次我们看看,除了Pandas以外,常用两个都是为了大数据处理并行数据框架对比测试。...测试内容 这两个脚本主要功能包括: 从两个parquet 文件中提取数据,对于小型数据集,变量path1将为“yellow_tripdata/ yellow_tripdata_2014-01”,对于中等大小数据集...将最终结果保存到新文件 脚本 1、Polars 数据加载读取 def extraction(): """ Extract two datasets from parquet...1、小数据集 我们使用164 Mb数据集,这样大小数据集对我们来说比较小,日常也时非常常见。...由于polar和Dask都是使用惰性运行,所以下面展示了完整ETL结果(平均运行5次)。 Polars小型数据集和中型数据集测试中都取得了胜利。

    47140

    Vaex :突破pandas,快速分析100GB大数据集

    Pythonpandas是大家常用数据处理工具,能应付较大数据集(千万行级别),但当数据量达到十亿百亿行级别,pandas处理起来就有点力不从心了,可以说非常慢。...而vaex只会对数据进行内存映射,而不是真的读取数据到内存,这个和spark懒加载是一样使用时候 才会去加载,声明时候不加载。...美中不足是,vaex懒加载只支持HDF5, Apache Arrow,Parquet, FITS等文件,不支持csv等文本文件,因为文本文件没办法进行内存映射。...在内存映射过程,并没有实际数据拷贝,文件没有被载入内存,只是逻辑上被放入了内存,具体到代码,就是建立并初始化了相关数据结构(struct address_space)。 ❞ 什么是vaex?...读取数据 vaex支持读取hdf5、csv、parquet文件,使用read方法。hdf5可以惰性读取,而csv只能读到内存。 ? vaex数据读取函数: ?

    3K31

    Vaex :突破pandas,快速分析100GB大数据集

    Pythonpandas是大家常用数据处理工具,能应付较大数据集(千万行级别),但当数据量达到十亿百亿行级别,pandas处理起来就有点力不从心了,可以说非常慢。...而vaex只会对数据进行内存映射,而不是真的读取数据到内存,这个和spark懒加载是一样使用时候 才会去加载,声明时候不加载。...美中不足是,vaex懒加载只支持HDF5, Apache Arrow,Parquet, FITS等文件,不支持csv等文本文件,因为文本文件没办法进行内存映射。...在内存映射过程,并没有实际数据拷贝,文件没有被载入内存,只是逻辑上被放入了内存,具体到代码,就是建立并初始化了相关数据结构(struct address_space)。 ❞ 什么是vaex?...、csv、parquet文件,使用read方法。

    2.5K70

    快使用Parquet和Feather格式!⛵

    图片本文介绍了 Parquet 和 Feather 两种文件类型,可以提高本地存储数据时读写速度,并压缩存储磁盘上数据大小。大型 CSV 文件克星!...相对较小数据集上,读取-处理-写入操作可能很舒服,但对于大型 .csv 文件来说,这些操作非常麻烦,可能会消耗大量时间和资源。...为了解决这个问题,我将介绍两种文件类型,它们可以提高您数据读写速度,并压缩存储磁盘上数据大小:ParquetFeather图片图片这两种文件类型都具有以下特点:默认情况下可以使用 Python-Pandas...以二进制格式以自己类型而不是原始格式存储数据,您最多可以节省 50% 存储空间,并且可以在读写操作获得高达 x100 加速。这两种文件类型都非常易于使用。更改您当前使用代码行即可。...filesdf.to_feather("df.feather")# Reading Feather filesdf_feat = pd.read_feather("df.feather") 总结在本篇内容

    1.3K30

    【python】pyarrow.parquet+pandas:读取及使用parquet文件

    例如,可以使用该模块读取Parquet文件数据,并转换为pandas DataFrame来进行进一步分析和处理。同时,也可以使用这个模块将DataFrame数据保存为Parquet格式。...  当使用pyarrow.parquet模块时,通常操作包括读取和写入Parquet文件,以及对Parquet文件数据进行操作和转换。...().to_pandas() 使用pq.ParquetFile打开Parquet文件; 使用read().to_pandas()方法将文件数据读取为pandas DataFrame。...部分内容援引自博客:使用python打开parquet文件 3....迭代方式来处理Parquet文件   如果Parquet文件非常大,可能会占用大量内存。处理大型数据时,建议使用迭代方式来处理Parquet文件,以减少内存占用。

    35210
    领券