小小明:「凹凸数据」专栏作者,Pandas数据处理高手,致力于帮助无数数据从业者解决数据处理难题。...之前有群友反应同事给了他一个几百MB的sql脚本,导入数据库再从数据库读取数据有点慢,想了解下有没有可以直接读取sql脚本到pandas的方法。...01 解析sql脚本文本文件替换成csv格式并加载 我考虑了一下sql脚本也就只是一个文本文件而已,而且只有几百MB,现代的机器足以把它一次性全部加载到内存中,使用python来处理也不会太慢。...读取方法: from io import StringIO import pandas as pd import re def read_sql_script_all(sql_file_path, quotechar...加载sql脚本的方法: from sqlalchemy import create_engine import pandas as pd import re def load_sql2sqlite_conn
这篇文章我们先来了解一下pandas包中的类SQL操作,pandas中基本涵盖了SQL和EXCEL中的数据处理功能,灵活应用的话会非常高效。...写过SQL的小伙伴了解,条件查询就是SQL中WHERE的部分, pandas如何实现where条件,我们来仔细盘一下: 第一种写法: print(data[data['a'] >= '2']) 上面可以解读为...3, 6, 0, 8, 5]) B = np.where(A%2 == 0, A+1, A-1) # 偶+1,奇-1 print(B) SQL中有一个函数为like,即为模糊查询,这一查询方式在pandas...多DataFrame的查询主要是解决SQL中join和concat的问题,python中主要使用merge和concat来实现对应的功能具体写法如下: Merge的用法:merge主要是用作按行拼接,类似于...结合上文有没有发现,同样的功能,python比SQL简单,这也是python的一大优势。
写在最前 Python在数据分析领域有三个必须需要熟悉的库,分别是pandas,numpy和matplotlib,如果排个优先级的话,我推荐先学pandas。...---- 基本用法 读取数据 SQL sql读取数据其实没啥可说的,一句简单的select * from table_name就OK了。...; pandas.read_sql():用于读取数据库,传入sql语句,需要配合其他库连接数据库。...筛选列 SQL select city, country from table_name Pandas # 筛选一列 # 这样返回的是series data['City'].head() # 这样返回的是...-- 筛选前100行 select * from table_name limit 100 Pandas pandas支持的方式就比较多了,如果你了解python的切片操作,以下应该会比较好理解。
经常听别人说 Python 在数据领域有多厉害,结果学了很长时间,连数据处理都麻烦得要死。...后来才发现,原来不是 Python 数据处理厉害,而是他有数据分析神器—— pandas 前言 有不少小伙伴向我反映 pandas 专栏缺少练习题,因此这里我使用一套 sql 的题目,作为 pandas...本文大部分的解题过程尽可能使用 pandas 中最基础的入门操作完成,涉及的知识点基本在专栏中的前15节内容中有详尽讲解。...上一篇文章在这里 sql题目pandas解法(01):筛选、all、any常用技巧 ---- 题目 与"赵雷"同学报读课程至少有一门相同的学生信息: 解读: 行5:首先,找到"赵雷"的课程记录(df_wd.query...pandas 也能按这种思路完成: pandas 中的 isin 对应 Sql 的 in A列.isin(B列),得到的结果是一个长度与A列一样的 bool值的列,每个 bool 值表示 A列对应的值是否在
请思考: 1 SQL的表连接有哪些方式?如何使用? 2 pandas的merge()函数如何实现左连接(left_join)? 我创建了Python语言微信群,定位:Python语言学习和实践。...想要入群的伙伴,请加我的个人微信:luqin360,备注:Python入群。 一 SQL的表连接方式 一图胜千字,SQL表连接方式,如下图总结: ?...二 pandas的merge()函数实现类SQL的连接 pandas提供merge()函数可以便捷地实现类似SQL的各种连接操作。 ?...>merge函数说明文档: https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.merge.html...指定要连接右侧数据框的列或者索引 left_index:使用左侧数据框的索引作为连接的key right_index:使用右侧数据框的索引作为连接的key 三 实践操练 1 导入所需库和数据集 代码 # 导入所需库 import pandas
''' http://pandas.pydata.org/pandas-docs/stable/10min.html numpy的主要数据结构是ndarry pandas的主要数据结构是...Series、DataFrame ''' import pandas as pd import numpy as np import matplotlib.pyplot as plt df1
functools import reduce lambda1 = lambda x: x**2 lambda2 = lambda x,y:x+y lambda3 = lambda x:x%2==0 #python...语句与crud cursor.execute('show tables') sql = 'select * from jobdata limit 5' print(sql) # 5.执行sql获取结果...(b) c = a > b print(a[c]) print(np.where(c,a,b)) [[3 5] [2 8]] [[1 6] [4 3]] [3 8] [[3 6] [4 8]] Pandas...(image-637407-1537096026060)] python 中的多线程 # 线程 import time import threading def music(name,loop):...time.sleep(1) print('work_2 end') work_1('zhang.txt',3) work_2('xiao.txt',4) `` ```python
#coding=utf-8 import numpy as np import pandas as pd import matplotlib.pyplot as pyplot #s=pd.Series...': None} cities = pd.Series(d) #--------------------------------------------- #print cities # F:\桌面>python...支持DataFrame直接读入或写入数据库 #注意:pandas直接to_sql速度很慢,如果写入大数据量DataFrame,可以先将DataFrame转换为csv文件,然后直接导入 # from pandas.io...import sql # import sqlite3 # conn = sqlite3.connect('/Users/gjreda/Dropbox/gregreda.com/_code/towed...') # query = "SELECT * FROM towed WHERE make = 'FORD';" # results = sql.read_sql(query, con=conn) #
1、Pandas简介(类似于Excel)一个基于NumPy数据分析包。提供了高效地操作大型数据集所需的工具,支持数据上做各种变化。 为Python提供高性能、易使用的数据结构和数据分析工具。...使用时先导入 import pandas as pd (往后的调用只需要输入pd即可,当然也可以把as pd 改成任何使用者喜欢的词汇,比如 as AB 之类的) 里面有两大数据结构在很多情况下都会用到...#%%import pandas as pd# Seriesgenes_value = [1,"TP53","cd44","cd168",78]s1 = pd.Series(genes_value)print...", sep = " ");重要参数:sep,usecols, nrows, skiprowssep: 如果不指定参数,Python则会使用逗号分隔。...txt和csv文本文件的保存:常规方式: import pandas as pd data.to_csv("practive/pathway.csv", index = False) 行索引不写入文件
# pandas 数据预处理 基于numpy # 读取csv文件(逗号隔开的文件) import pandas,os,numpy as np path = r"D:\desktop\Workspace\...PythonWorkSpace\Machine-Learning\asstes\csv\2019_student_teacher.csv" student_teacher = pandas.read_csv...报考专业代码', '报考专业', '研究方向', '培养模式', '录取导师'], dtype='object') # print(student_teacher.shape) # (398, 8) # pandas...student_teacher.sort_values("序号",inplace=True,ascending=True)) # xxx = student_teacher["xxx"] # isNullOrNot = pandas.isnull...student_teacher["xx"] 可再次对它进行切片 # ============================================= # 自定义Series from pandas
文章转载自公众号:数据管道 Abstract Pandas是一个开源的Python数据分析库,结合 NumPy 和 Matplotlib 类库,可以在内存中进行高性能的数据清洗、转换、分析及可视化工作...在where字句中搭配NOT NULL可以获得某个列不为空的项,Pandas中也有对应的实现: SQL: ? Pandas: ? DISTINCT(数据去重) SQL: ? Pandas: ?...现在看一下不同的连接类型的SQL和Pandas实现: INNER JOIN SQL: ? Pandas: ? LEFT OUTER JOIN SQL: ? Pandas: ?...RIGHT JOIN SQL: ? Pandas: ? FULL JOIN SQL: ? Pandas: ? ORDER(数据排序) SQL: ? Pandas: ?...UPDATE(数据更新) SQL: ? Pandas: ? DELETE(数据删除) SQL: ? Pandas: ?
DataFrame.fillna(self, value=None, method=None, axis=None, inplace=False, limit=...
在pandas的官方文档中对常用的SQL查询语句与pandas的查询语句进行了对比,这里以 @猴子 社群里面的朝阳医院数据为例进行演示,顺便求第四关门票,整体数据结构如下: import pandas...SELECT 从中选择“商品名称”,“销售数量”两列 SQL: SELECT "商品名称","销售数量" FROM cyyy LIMIT 5 PANDAS: df[['商品名称','销售数量']].head...WHERE 从中筛选出销售数量为3件的销售记录 SQL: SELECT * FROM cyyy WHERE "销售数量" = 3 LIMIT 5 PANDAS: df[df['销售数量']==3].head...GROUP BY 在Pandas中可以使用groupby()函数实现类似于SQL中的GROUP BY功能,groupby()能将数据集按某一条件分为多个组,然后对其进行某种函数运算(通常是聚合运算)。...如统计每种药品的销售记录数量 SQL: SELECT 商品名称,count(*) FROM cyyy GROUP BY 商品名称 PANDAS: df.groupby('商品名称').size().head
作为 pandas 教程的第四篇,本篇将对比 sql 语言,学习 pandas 中各种类 sql 操作,文章篇幅较长,可以先收藏后食用,但不可以收藏后积灰~ 为了方便,依然以下面这个 DataFrame...为例,其变量名为 df,设有一同样结构的 SQL 表,表名为 tb: ?...90 pandas 写法:and 符号 &,df[(df['sex']=='male') & (df['grade']>90)] 常见的 pandas 错误写法: 由于 sql 的思维惯性,把 & 写成...需求:数学、语文、英语三门课各自的平均分,最高分、最低分 sql 写法:select avg(grade),max(grade),min(grade) from tb group by course pandas...这四种连接对应的 sql 及 pandas 写法如下表: 连接 sql pandas 内连接 select * from tb inner join right_tb on tb.name=right_tb.name
什么是pandas pandas是python的一个数据分析包,是基于NumPy的一种工具,该工具是为了解决数据分析任务而创建的。...pandas纳入了大量库和一些标准的数据模型,提供了高效地操作大型数据集所需的工具。pandas提供了大量能使我们快速便捷地处理数据的函数和方法。...pandas最初被作为金融数据分析工具而开发出来,因此,pandas为时间序列分析提供了很好的支持。 ...Pandas的名称来自于面板数据(panel data)和python数据分析(data analysis)。...pandas安装 pandas安装指令: pip install pandas pandas中数据结构Series和DataFrame pandas中主要有两种数据结构,分别是:Series和DataFrame
Pandas是一个非常方便的数据处理、数据分析的类库,在 人人都是数据分析师,人人都能玩转Pandas 这篇文章中,我将Pandas进行了一个系统的梳理。...但不可否认的是,不是所有的程序员都会Python,也不是所有的Pythoner都会使用Pandas。 不过好消息是,借助于pandassql,你可以使用SQL来操作DataFrame。...# 导入相关库 import numpy as np import pandas as pd from pandasql import sqldf, load_meat, load_births 基础...pysqldf = lambda sql: sqldf(sql, globals()) 接下来我们导入一些数据。...sql = "select * from births limit 2" pysqldf(sql) date births 0 1975-01-01 00:00:00.000000 265775 1
/usr/bin/env python # -*- coding: utf-8 -*- # @Time : 2017/11/14 下午6:27 # @Author : wz # @Email...: 277215243@qq.com # @File : testpanda.py # @web : https://www.bthlt.com import pandas ''' 2017...name__ == '__main__': colname = ['time', 'id', 'qq', 'value', 'tag', 'proc', 'result'] rdtb = pandas.read_table
这节讲如何使用pandas处理数据获取TOP SQL语句 开发环境 操作系统:CentOS 7.4 Python版本 :3.6 Django版本: 1.10.5 操作系统用户:oms 数据处理:...pandas 前端展示:highcharts 上节我们介绍了如何将Oracle TOP SQL数据存入数据库 接下来是如何将这些数据提取出来然后进行处理最后在前端展示 这节讲如何利用pandas处理数据来获取...由于我选择时间段间隔一个小时,所以上面查询结果每个sql_id对应两行数据,其中16:00的数据在上面一行 接下来我们要pandas做的事情就是计算每个sql_id对应的disk_reads等栏位的差值...0则将分母变为1 接下来将整理后的结果格式化成pandas的DataFrame格式 最后利用pandas排序函数以disk_reads的值来降序排列,得到TOP语句 运行结果 如下为运行后的结果,这里以...下面为程序的截图: 完整代码会在专题的最后放出,大家可根据代码进行调试来熟悉pandas的功能 ? 下节为如何讲如何在前端显示
今天我来给你介绍Python的另一个工具Pandas。...如何用SQL方式打开Pandas Pandas的DataFrame数据类型可以让我们像处理数据表一样进行操作,比如数据表的增删改查,都可以用Pandas工具来完成。...事实上,在Python里可以直接使用SQL语句来操作Pandas。 这里给你介绍个工具:pandasql。...这样我们就可以在Python里,直接用SQL语句中对DataFrame进行操作,举个例子: import pandas as pd from pandas import DataFrame from pandasql...Pandas包与NumPy工具库配合使用可以发挥巨大的威力,正是有了Pandas工具,Python做数据挖掘才具有优势。 ?
Series类型由一组数据及与之相关的数据索引组成,Series类型可以由如下类型创建: Python列表,index与列表元素个数一致 In [1]: import pandas as pd In...标量值,index表达Series类型的尺寸 In [4]: pd.Series(1,index = [1,2,3]) Out[4]: 1 1 2 1 3 1 dtype: int64 Python...a['a'] Out[18]: 1 #不能混用 In [20]: a[['a',1]] Out[20]: a 1.0 1 NaN dtype: float64 Series类型的操作类似Python