首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

如何在 Pandas DataFrame中重命名列?

DataFrame上最常见的操作之一是重命名(rename)列名称。 分析人员重命名列名称的动机之一是确保这些列名称是有效的Python属性名称。...这意味着列名称不能以数字开头,而是带下画线的小写字母数字。好的列名称还应该是描述性的,言简意赅,并且不应与现有的DataFrame或Series属性冲突。 本文中,我们将重命名列名称。...movies = pd.read_csv("data/movie.csv") 2)DataFrame的重命名方法接收将旧值映射到新值的字典。 可以为这些列创建一个字典,如下所示。...接下来将显示如何通过赋值给.column属性进行重命名。 扩展 在此处,更改了列名称。还可以使用.rename方法重命名索引,如果列是字符串值,则更有意义。...当列表具有与行和列标签相同数量的元素时,此赋值有 以下代码就显示了这样一个示例 从CSV文件中读取数据,并使用index_col参数告诉Pandas将movie_title列用作索引。

5.6K20

Pandas 实践手册(一)

# 查看官方文档 2 Pandas 对象 本章节将介绍三种基本的 Pandas 对象(数据结构):Series、DataFrame 和 Index。...字典是一种将任意的键映射到任意的值上的数据结构,而 Series 则是将包含类型信息的键映射到包含类型信息的值上的数据结构。「类型信息」可以为 Series 提供比普通字典更高效的操作。...2.2.1 DataFrame 作为广义 Numpy 数组 我们可以将 DataFrame 看做一个拥有灵活的行索引与列名的「二维」 Numpy 数组,其本质上就是一系列对齐(共享相同的索引)的 Series...2.2.2 DataFrame 作为特殊的字典 我们也可以将 DataFrame 对象看作一种特殊的字典,其将一个「列名」映射到一个 Series 对象上。...,因此 DataFrame 对象需要首先通过列索引来找到列对象,再去通过行索引访问具体的值。

2K10
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    数据科学 IPython 笔记本 7.4 Pandas 对象介绍

    字典是将任意键映射到一组任意值的结构,而Series是将类型化键映射到一组类型化值的结构。...作为扩展的 NumPy 数组的DataFrame 如果Series是具有灵活索引的一维数组的模拟,则DataFrame是具有灵活行索引和灵活列名的二维数组的模拟。...作为特化字典的DataFrame 同样,我们也可以将DataFrame视为字典的特化。 字典将键映射到值,DataFrame将列名称映射到列数据的Series。...York 141297 Texas 695662 Name: area, dtype: int64 ''' 注意这里潜在的混淆点:在一个二维 NumPy 数组中,data[0]将返回第一行...0 0 0 1 1 2 2 2 4 即使字典中的某些键丢失,Pandas 也会用NaN(即“非数字”)值填充它们: pd.DataFrame([{'a': 1, 'b': 2}, {'b': 3, '

    2.3K10

    《Pandas 1.x Cookbook · 第二版》第03章 创建和持久化DataFrame

    process(chunk) 因为CSV文件不保存数据类型,Pandas需要推断每列的数据类型是什么。如果一列的值都是整数,并且没有缺失值,则Pandas将其认定为int64。...如果一列是数值类型,但不是整数,或存在缺失值,Pandas使用的是float64。这两种数据类型占用的内存比较大。...支持一些特定的方式: columns —— (默认)将列名映射为列中的值的列表; records —— 行的列表。...每行是一个字典,一行映射到一个值; split —— columns映射到列名,index映射到行索引值,data映射到每行数据组成的列表; index —— 将索引映射到行,每行是一个列映射到值的字典...不包含列和行索引的值; table —— 将schema映射到DataFrame的纲要,data映射为字典的列表。

    1.3K30

    Python数据分析模块 | pandas做数据分析(二):常用预处理操作

    在数据分析和机器学习的一些任务里面,对于数据集的某些列或者行丢弃,以及数据集之间的合并操作是非常常见的. 1、合并操作 pandas.merge pandas.merge(left, right, how...prefix : 字符串,或者字符串列表,或者字符串字典.默认为None,这里应该传入一个字符串列表,且这个列表的长度是和将要被get_dummis的那些列数量是相等的.同样,prefix选项也可以是一个把列名映射到...#对于一个Series来说,行数保持不变,列数变为不同类的个数 #但是每一行还是以编码的形式表示原来的类别 #这个函数返回是一个DataFrame,其中列名为各种类别 s = pd.Series(list...4、处理缺失值 pandas使用浮点数NaN(not a number)表示浮点和非浮点数组中的缺失数据....填充缺失值 pandas.DataFrame.fillna 使用指定的方法来填充缺失值,并且返回被填充好的DataFrame DataFrame.fillna(value=None,method=None

    1.8K60

    Pandas 的Merge函数详解

    为了帮助区分合并过程中相同列名的结果,我们可以将一个元组对象传递给suffix参数。...最后就是交叉连接,将合并两个DataFrame之间的每个数据行。 让我们用下面的代码尝试交叉连接。...', right_on = 'delivery_date', right_by = 'product') 在上面的代码中将product列传递给right_by参数,这样product列中的每个值都映射到每个可用行...在上面的DataFrame中可以看到Order数据集中的每一行都映射到Delivery数据集中的组。 merge_asof merge_asof 是一种用于按照最近的关键列值合并两个数据集的函数。...如果在正确的DataFrame中有多个重复的键,则只有最后一行用于合并过程。例如将更改delivery_date数据,使其具有多个不同产品的“2014-07-06”值。

    32330

    数据导入与预处理-第6章-02数据变换

    小数定标标准化(规范化) 小数定标规范化:通过移动属性值的小数位数,将属性值映射到[-1,1]之间,移动的小数位数取决于属性值绝对值的最大值。...连续属性变换成分类属性涉及两个子任务:决定需要多少个分类变量,以及确定如何将连续属性值映射到这些分类值。...基于列值重塑数据(生成一个“透视”表)。使用来自指定索引/列的唯一值来形成结果DataFrame的轴。此函数不支持数据聚合,多个值将导致列中的MultiIndex。...',values='价格(元)') new_df 输出为: 2.2.2 melt方法 melt()是pivot()的逆操作方法,用于将DataFrame类对象的列索引转换为一行数据。...示例代码如下: 查看初始数据 new_df 输出为: # 将列索引转换为一行数据: # 将列索引转换为一行数据 new_df.melt(value_name='价格(元)', ignore_index

    19.3K20

    使用Pandas&NumPy进行数据清洗的6大常用方法

    学习之前假设你已经有了对Pandas和Numpy库的基本认识,包括Pandas的工作基础Series和DataFrame对象,应用到这些对象上的常用方法,以及熟悉了NumPy的NaN值。...Pandas提供了一个非常便捷的方法drop()函数来移除一个DataFrame中不想要的行或列。让我们看一个简单的例子如何从DataFrame中移除列。...这里我们可以再次使用pandas的.str()方法,同时我们也可以使用applymap()将一个python callable映射到DataFrame中的每个元素上。...记录一下pandas是如何将包含国家的列名NaN改变为Unnamed:0的。 为了重命名列,我们将使用DataFrame的rename()方法,允许你以一个映射(这里是一个字典)重新标记一个轴。...让我们开始定义一个字典来将现在的列名称(键)映射到更多的可用列名称(字典的值)。 >>> new_names = {'Unnamed: 0': 'Country', ...

    3.5K10

    Pandas知识点-合并操作join

    join(other): 将一个或多个DataFrame加入到当前DataFrame中,实现合并的功能。...other参数传入被合并的DataFrame,通常是传入一个DataFrame,将两个DataFrame合并到一起,如果需要合并多个,则用列表或元组的方式传入(合并多个DataFrame需要满足一些条件...join()方法合并的结果默认以左连接的方式进行合并,默认的连接列是DataFrame的行索引,并且,合并两个DataFrame时,两个DataFrame中不能有相同的列名(不像merge()方法会自动给相同的列名加后缀...只有给lsuffix和rsuffix指定值之后(即使指定相同的值也可以),合并才会成功。 五合并多个DataFrame ---- ?...以上就是Pandas合并方法join()的介绍,如果需要本文代码,可以点击关注公众号“Python碎片”,然后在后台回复“pandas14”关键字获取完整代码。

    3.6K10

    Pandas常用的数据处理方法

    本文的Pandas知识点包括: 1、合并数据集 2、重塑和轴向旋转 3、数据转换 4、数据聚合 1、合并数据集 Pandas中合并数据集有多种方式,这里我们来逐一介绍 1.1 数据库风格合并 数据库风格的合并指根据索引或某一列的值是否相等进行合并的方式...2、重塑和轴向旋转 在重塑和轴向旋转中,有两个重要的函数,二者互为逆操作: stack:将数据的列旋转为行 unstack:将数据的行旋转为列 先来看下面的例子: data = pd.DataFrame...我们使用unstack()将数据的列旋转为行,默认是最里层的行索引: result.unstack() ?...假如你想要对不同的列应用不同的函数,具体的办法是向agg传入一个从列名映射到函数的字典: grouped.agg({'tip':[np.max,'min'],'size':'sum'}) ?...可以看到,在上面的例子中,分组产生了一个标量,即分组的平均值,然后transform将这个值映射到对应的位置上,现在DataFrame中每个位置上的数据都是对应组别的平均值。

    8.4K90

    Pandas知识点-添加操作append

    在Pandas中,append()方法用于将一个或多个DataFrame或Series添加到DataFrame中。append()方法也可以用于合并操作,本文介绍append()方法的用法。...即使指定的name值与DataFrame中的行索引重复,也可以添加成功(verify_integrity不为True)。...合并时根据指定的连接列(或行索引)和连接方式来匹配两个DataFrame的行。可以在结果中设置相同列名的后缀和显示连接列是否在两个DataFrame中都存在。...联合操作是将一个DataFrame中的部分数据用另一个DataFrame中的数据替换或补充,通过一个函数来定义联合时取数据的规则。在联合过程中还可以对空值进行填充。...append(): 添加操作,可以将多个DataFrame添加到一个DataFrame中,按行的方式进行添加。添加操作只是将多个DataFrame按行拼接到一起,可以重设行索引。

    4.9K30

    【数据处理包Pandas】数据载入与预处理

    Pandas 库将外部数据转换为 DataFrame 数据格式,处理完成后再存储到相应的外部文件中。 1、读 / 写文本文件 文本文件是一种由若干行字符构成的计算机文件,它是一种典型的顺序文件。...read_csv默认为 “,”,read_table默认为制表符 “\t”,如果分隔符指定错误,在读取数据的时候,每一行数据将连成一片 header 接收int或sequence,表示将某行数据作为列名...df.dropna(axis='columns', how='all') 通过thresh参数,那些非缺失值的个数大于等于阈值的行或列将保留。...duplicates格式为: DataFrame.duplicated(subset=None, keep='first') subset:可选参数,用于指定要检查重复值的列名或列名列表。...=False) subset:可选参数,用于指定要检查重复值的列名或列名列表。

    11810

    Pandas中的对象

    是广义的Numpy数组DataFrame是特殊的字典创建DataFrame对象Pandas的Index对象将Index看作不可变数组将Index看作有序集合 安装并使用Pandas import numpy...index=[2, 5, 3, 7]) data 2 0.25 5 0.50 3 0.75 7 1.00 dtype: float64 Series是特殊的字典 字典是将任意键映射到一组任意值的结构...,而Series对象是将类型化键映射到一组类型化值的结构。...DataFrame是广义的Numpy数组 如果将Series 类比为带灵活索引的一维数组,那么DataFrame 就可以看作是一种既有灵活的行索引,又有灵活列索引的二维数组。...如果不指定行列索引值,那么行列默认都是整数索引值:(本质是给一个多维Series对象,给定行索引index,给定列索引columus,默认为None) pd.DataFrame(np.random.rand

    2.7K30

    使用Pandas&NumPy进行数据清洗的6大常用方法

    学习之前假设你已经有了对Pandas和Numpy库的基本认识,包括Pandas的工作基础Series和DataFrame对象,应用到这些对象上的常用方法,以及熟悉了NumPy的NaN值。...Pandas提供了一个非常便捷的方法drop()函数来移除一个DataFrame中不想要的行或列。让我们看一个简单的例子如何从DataFrame中移除列。...这里我们可以再次使用pandas的.str()方法,同时我们也可以使用applymap()将一个python callable映射到DataFrame中的每个元素上。...记录一下pandas是如何将包含国家的列名NaN改变为Unnamed:0的。 为了重命名列,我们将使用DataFrame的rename()方法,允许你以一个映射(这里是一个字典)重新标记一个轴。...让我们开始定义一个字典将现有的列名称(键)映射到更多的可用列名称上(字典的值)。 1>>> new_names = {'Unnamed: 0': 'Country', 2...

    3.2K20

    Pandas速查手册中文版

    pandas-cheat-sheet.pdf 关键缩写和包导入 在这个速查手册中,我们使用如下缩写: df:任意的Pandas DataFrame对象 同时我们需要做如下的引入: import pandas...']:按索引选取数据 df.iloc[0,:]:返回第一行 df.iloc[0,0]:返回第一列的第一个元素 数据清理 df.columns = ['a','b','c']:重命名列名 pd.isnull...():检查DataFrame对象中的空值,并返回一个Boolean数组 pd.notnull():检查DataFrame对象中的非空值,并返回一个Boolean数组 df.dropna():删除所有包含空值的行...df.dropna(axis=1):删除所有包含空值的列 df.dropna(axis=1,thresh=n):删除所有小于n个非空值的行 df.fillna(x):用x替换DataFrame对象中所有的空值...(np.max,axis=1):对DataFrame中的每一行应用函数np.max 数据合并 df1.append(df2):将df2中的行添加到df1的尾部 df.concat([df1, df2],

    12.2K92

    整理了25个Pandas实用技巧(上)

    更改列名 让我们来看一下刚才我们创建的示例DataFrame: ? 我更喜欢在选取pandas列的时候使用点(.),但是这对那么列名中含有空格的列不会生效。让我们来修复这个问题。...如果你需要一次性重新命令所有的列名,更简单的方式就是重写DataFrame的columns属性: In [15]: df.columns = ['col_one', 'col_two'] 如果你需要做的仅仅是将空格换成下划线...你可以对第三列使用to_numeric()函数,告诉其将任何无效数据转换为NaN: ? 如果你知道NaN值代表0,那么你可以fillna()函数将他们替换成0: ?...通过仅读取用到的两列,我们将DataFrame的空间大小缩小至13.6KB。 第二步是将所有实际上为类别变量的object列转换成类别变量,可以调用dtypes参数: ?...我们以生成器表达式用read_csv()函数来读取每个文件,并将结果传递给concat()函数,这会将单个的DataFrame按行来组合: ? 不幸的是,索引值存在重复。

    2.2K20

    pandas库的简单介绍(3)

    直接选择中,frame[[列名,列名]]表示选择列,frame[:3]表示选择行。 loc是根据轴标签进行选择,frame[行标签1,[列名,列名]]。...通过标签选择行和列 get_value, set_value方法 根据行和列的标签设置单个值 灵活运用前9个方法对后续批量数据清洗和处理有很大的帮助。...在pandas库的简单介绍(1)已经介绍过Series对象相加的例子,这里说明一下DataFrame对象的加减。...frame1通过利用add方法,将f2和fill_value作为参数传入: frame1.add(frame2, fill_value = 0) 可以看出fill_value将缺失值的一方作为0处理。...', 'Colorado', 'Utah', 'New York']) print(frame) np.abs(frame) #使用了np的abs(绝对值)方法 另外一个常用操作是将函数应用到一行或一列的一维数组上

    1.2K10

    深入理解pandas读取excel,txt,csv文件等命令

    /test.txt") print(df) 但是,注意,这个地方读取出来的数据内容为3行1列的DataFrame类型,并没有按照我们的要求得到3行4列 import pandas as pd df =...(忽略注解行),如果没有指定列名,默认header=0; 如果指定了列名header=None names 指定列名,如果文件中不包含header的行,应该显性表示header=None ,header...未指定的中间行将被删除(例如,跳过此示例中的2行) index_col(案例1) 默认为None 用列名作为DataFrame的行标签,如果给出序列,则使用MultiIndex。...注意:int/string返回的是dataframe,而none和list返回的是dict of dataframe,表名用字符串表示,索引表位置用整数表示; header 指定作为列名的行,默认0,即取第一行...设置为在将字符串解码为双精度值时启用更高精度(strtod)函数的使用。默认值(False)是使用快速但不太精确的内置功能 date_unit string,用于检测转换日期的时间戳单位。默认值无。

    12.3K40
    领券