今天是pandas数据处理专题的第六篇文章,我们来聊聊DataFrame的排序与汇总运算。...在上一篇文章当中我们主要介绍了DataFrame当中的apply方法,如何在一个DataFrame对每一行或者是每一列进行广播运算,使得我们可以在很短的时间内处理整份数据。...排序 排序是我们一个非常基本的需求,在pandas当中将这个需求进一步细分,细分成了根据索引排序以及根据值排序。我们先来看看Series当中的排序方法。...method的合法参数并不止first这一种,还有一些其他稍微冷门一些的用法,我们一并列出。 ? 如果是DataFrame的话,默认是以行为单位,计算每一行中元素占整体的排名。...首先是sum,我们可以使用sum来对DataFrame进行求和,如果不传任何参数,默认是对每一行进行求和。 ? 除了sum之外,另一个常用的就是mean,可以针对一行或者是一列求平均。 ?
大家好,我是架构君,一个会写代码吟诗的架构师。今天说一说pandas | DataFrame中的排序与汇总方法,希望能够帮助大家进步!!!...今天是pandas数据处理专题的第六篇文章,我们来聊聊DataFrame的排序与汇总运算。...在上一篇文章当中我们主要介绍了DataFrame当中的apply方法,如何在一个DataFrame对每一行或者是每一列进行广播运算,使得我们可以在很短的时间内处理整份数据。...method的合法参数并不止first这一种,还有一些其他稍微冷门一些的用法,我们一并列出。 如果是DataFrame的话,默认是以行为单位,计算每一行中元素占整体的排名。...除了sum之外,另一个常用的就是mean,可以针对一行或者是一列求平均。 由于DataFrame当中常常会有为NA的元素,所以我们可以通过skipna这个参数排除掉缺失值之后再计算平均值。
微信公众号:yale记 关注可了解更多的教程问题或建议,请公众号留言。 背景介绍 今天我们学习多个DataFrame之间的连接和追加的操作,在合并DataFrame时,您可能会考虑很多目标。...例如,您可能想要“追加”它们,您可能会添加到最后,基本上添加更多行。或者您可能希望添加更多列,我们现在将开始介绍两种主要合并DataFrame的方式:连接和追加。 ? 入门示例 ? ? ? ? ?...代码片段: # ## Dataframe的连接和追加数据 # In[23]: import pandas as pd # In[24]: df1 = pd.DataFrame({'num':[60,20,80,90...# In[27]: concat_df = pd.concat([df1,df2]) concat_df # ## 连接三个dataframe # In[28]: concat_df_all = pd.concat...([df1,df2,df3],sort=False) concat_df_all # ## 使用append()追加dataframe # In[29]: df4 = df1.append(df2) df4
今天是pandas数据处理专题的第5篇文章,我们来聊聊pandas的一些高级运算。...函数与映射 pandas的另外一个优点是兼容了numpy当中的一些运算方法和函数,使得我们也可以将一些numpy当中的函数运用在DataFrame上,这样就大大拓展了使用方法以及运算方法。...apply方法除了可以用在一整个DataFrame上之外,我们也可以让它应用在某一行或者是某一列或者是某一个部分上,应用的方法都是一样的。...比如我们可以这样对DataFrame当中的某一行以及某一列应用平方这个方法。 ? 另外,apply中函数的作用域并不只局限在元素,我们也可以写出作用在一行或者是一列上的函数。...总结 今天的文章我们主要介绍了pandas当中apply与applymap的使用方法, 这两个方法在我们日常操作DataFrame的数据非常常用,可以说是手术刀级的api。
数据示例 loc loc 在index的标签上进行索引,范围包括start和end. ? iloc iloc 在index的位置上进行索引,不包括end. ?...ix ix 先在index的标签上索引,索引不到就在index的位置上索引(如果index非全整数),不包括end. ? github传送门
向GPU的转移允许大规模的加速,因为GPU比CPU拥有更多的内核。 笔者觉得,对于我来说一个比较好的使用场景是,代替并行,在pandas处理比较慢的时候,切换到cuDF,就不用写繁琐的并行了。...---- 官方文档: 1 Docs » API Reference 2 rapidsai/cudf 相关参考: nvidia-rapids︱cuDF与pandas一样的DataFrame库 NVIDIA...--- 文章目录 1 cuDF背景与安装 1.1 背景 1.2 安装 2 一些demo 2.1 新建dataframe 2.2 pandas 与 cuDF切换 2.3 选中某行列 2.4 apply_rows...图5:单个NVIDIA Tesla V100(立即免费试用) GPU与双路Intel Xeon E5–2698 v4 CPU(20核)上的cuDF vs Pandas加速 1.2 安装 有conda可以直接安装...与 cuDF切换 pandas到 cuDF >>> import pandas as pd >>> import cudf >>> pdf = pd.DataFrame({'a': [0, 1, 2,
前几天看到一个群友提的一个问题:求上图中X小于等于所有Y值的个数。比如,第一个Y为0,则5个X中小于等于0的个数为0。...实现这一目的的方法有多种,最易懂的方法应该是转置加数组,下面介绍其他两种方法: 双SET: data have; input ID X Y; cards; 1 1000 0 2 2000 0 3...then NUM=NUM+1; rc=h.find_next(); end; drop BYVAR X_ RC; run; 上面第一种方法程序行数少,但是有多次SET的操作
pandas将从CSV中提取数据到DataFrame中,这时候数据可以被看成是一个Excel表格,然后让你做这样的事情: 计算统计数据并回答有关数据的问题,比如每一列的平均值、中值、最大值或最小值是多少...2 pandas和其它工具包的关系 pandas不仅是数据科学工具箱的中心组件,而且与该集合中的其他工具包一起使用: pandas构建在NumPy包的顶部,这意味着在pandas中使用或复制了许多NumPy...Series本质上是一个列, 而DataFrame是一个由Series集合组成的多维表: ?...DataFrame和Series在许多操作上非常相似,一个操作可以执行另一个操作,比如填充空值和计算平均值。...从头创建DataFrame有许多方法,但是一个很好的选择是使用简单的dict字典 假设我们有一个卖苹果和橘子的水果摊。我们希望每个水果都有一列,每个客户购买都有一行。
--- 大家在前面的教程中看到了Pandas进行数据分析的灵活操作,但同时作为一个功能强大的全能工具库,它也能非常方便地支持数据可视化,而且大部分基础图像绘制只要一行代码就能实现,大大加速了我们的分析效率...一、基本绘图函数plot Series 和 DataFrame 上的可视化功能,只是围绕matplotlib库plot()方法的简单包装。...() 或 DataFrame.boxplot() 来绘制Boxplot,以可视化每个列中值的分布。...例如,这是一个箱线图,代表对[0,1)上的一个随机变量的10个观测值的五个试验。...本教程系列的代码可以在ShowMeAI对应的github中下载,可本地python环境运行,能科学上网的宝宝也可以直接借助google colab一键运行与交互操作学习哦!
在『Pandas进阶修炼120题』系列中,我们将对pandas中常用的操作以习题的形式发布。从读取数据到高级操作全部包含。...如果你是新手,可以通过本系列完整学习使用pandas进行数据处理的各种方法,如果你是高手,欢迎留言给出与答案的不同解法。本期先来20题热身吧!...1 创建DataFrame 题目:将下面的字典创建为DataFrame data = {"grammer":["Python","C","Java","GO",np.nan,"SQL","PHP","Python...答案: df = pd.DataFrame(data) 本期所有题目均基于该数据框给出 2 数据提取 题目:提取含有字符串"Python"的行 难度:⭐⭐ 期望结果 grammer score...'].fillna(df['popularity'].interpolate()) 7 数据提取 题目:提取popularity列中值大于3的行 难度:⭐⭐ 答案 df[df['popularity']
pandas_profiling 首先要介绍的是pandas_profiling,它扩展了pandas DataFrame的功能,这也是在之前多篇文章中提到的插件。...只需使用pip install pandas_profiling即可安装,在导入数据之后使用df.profile_report()一行命令即可快速生成描述性分析报告 可以看到,除了之前我们需要的一些描述性统计数据...sweetviz 第二个值得一用的是 sweetviz,同样是一个开源 Python 库,可生成美观、高密度的可视化,只需两行代码即可启动 EDA。 该插件围绕快速可视化目标值和比较数据集而构建。...) 可视化和比较 不同的数据集(例如训练与测试数据) 组内特征(例如男性与女性) 混合型联想 Sweetviz 无缝集成了数值(Pearson 相关)、分类(不确定系数)和分类-数值(相关比)数据类型的关联...类型推断 自动检测数字、分类和文本特征,可选择手动覆盖 概要信息 类型、唯一值、缺失值、重复行、最常见值 数值分析:最小值/最大值/范围、四分位数、平均值、众数、标准偏差、总和、中值绝对偏差、变异系数、
介绍 在操作dataframe时,初学者有时甚至是更高级的数据科学家会对如何在pandas中使用inplace参数感到困惑。 更有趣的是,我看到的解释这个概念的文章或教程并不多。...我没有记住所有这些函数,但是作为参数的几乎所有pandas DataFrame函数都将以类似的方式运行。这意味着在处理它们时,您将能够应用本文将介绍的相同逻辑。...它用所需的操作修改现有的dataframe,并在原始dataframe上“就地”(inplace)执行。 如果在dataframe上运行head()函数,应该会看到有两行被删除。...这个警告之所以出现是因为Pandas设计师很好,他们实际上是在警告你不要做你可能不想做的事情。该代码正在更改只有两列的dataframe,而不是原始数据框架。...这样就可以将dataframe中删除第二个name和age列中值为空的行。
你可以粗略浏览本文,了解Pandas的常用功能;也可以保存下来,作为以后数据处理工作时的速查手册,没准哪天就会用上呢~ 1创建数据对象 Pandas最常用的数据对象是数据框(DataFrame)和Series...数据框与R中的DataFrame格式类似,都是一个二维数组。Series则是一个一维数组,类似于列表。数据框是Pandas中最常用的数据组织方式和对象。...In: print(data2.info()) Out: pandas.core.frame.DataFrame'> RangeIndex: 3 entries, 0 to 2 Data...4 数据筛选和过滤 数据筛选和过滤是基于条件的数据选择,本章2.6.3提到的比较运算符都能用于数据的筛选和选择条件,不同的条件间的逻辑不能直接用and、or来实现且、或的逻辑,而是要用&和|实现。...d1和d2 7 数据分类汇总 数据分类汇与Excel中的概念和功能类似。
介绍 01 D-Tale D-Tale是Flask后端和React前端组合的产物,也是一个开源的Python自动可视化库,可以为我们提供查看和分析Pandas DataFrame的方法,帮助我们获得非常数据的详细...目前D-Tale支持DataFrame、Series、MultiIndex、DatetimeIndex 和 RangeIndex 等 Pandas 对象。...02 Pandas-Profiling Pandas-Profiling可以对Pandas DataFrame生成report报告。...其中: pandas_profiling的df.profile_report()扩展了pandas DataFrame以方便进行快速数据分析。...分位数统计,如最小值、Q1、中位数、Q3、最大值、范围、四分位距 描述性统计数据,如均值、众数、标准差、总和、中值绝对偏差、变异系数、峰态、偏度 出现最多的值 直方图 高度相关变量、Spearman、
DataFrame 二维数组 实例: # 导入模块 import pandas as pd import numpy as np # pandas创建一个二维数组 attr = pd.DataFrame...reshape(3,4)) print(attr) 输出: 0 1 2 3 0 0 1 2 3 1 4 5 6 7 2 8 9 10 11 # 和numpy不同的是在第一行和第一列的地方多了索引....iloc[1,:] # 取第二行 attr4.iloc[:,1] # 取第二列 attr4.iloc[:,[0,2]] # 取第一列和第三列 attr4.iloc[[0,1],[0,2]] # 取第一行和第二行的第一列和第三列...缺失数据的处理 我们如果读取爬去到的大量数据,可能会存在NaN值。 出现NaN和numpy中是一样的,表示不是一个数字。 我们需要把他修改成0获取其他中值,来减少我们计算的误差。...pandas 连接MongoDB数据库 # 导入操作MongoDB的模块 from pymongo import MongoClient import pandas as pd # 链接 client
Query Query是pandas的过滤查询函数,使用布尔表达式来查询DataFrame的列,就是说按照列的规则进行过滤操作。...「掩码」(英语:Mask)在计算机学科及数字逻辑中指的是一串二进制数字,通过与目标数字的按位操作,达到屏蔽指定位而实现需求。 6....Isin Isin也是一种过滤方法,用于查看某列中是否包含某个字符串,返回值为布尔Series,来表明每一行的情况。...Pct_change Pct_change是一个统计函数,用于表示当前元素与前面元素的相差百分比,两元素的区间可以调整。...,可选{‘average’, ‘min’, ‘max’, ‘first’, ‘dense’} method=average 默认设置: 相同的值占据前两名,分不出谁是1谁是2,那么去中值即1.5,下面一名为第三名
此教程适合有pandas基础的童鞋来看,很多知识点会一笔带过,不做详细解释 Pandas数据格式 Series DataFrame:每个column就是一个Series 基础属性shape,index...'A'].unique()# 返回唯一值的数组(类型为array) df.drop_duplicates(['k1'])# 保留k1列中的唯一值的行,默认保留第一行 df.drop_duplicates...=0) # inplace=Ture,在DataFrame上修改数据,而不是返回一个新的DataFrame df1.reindex(['a','b','c','d','e'], inplace=Ture...中的列columns设置成索引index 打造层次化索引的方法 # 将columns中的其中两列:race和sex的值设置索引,race为一级,sex为二级 # inplace=True 在原数据集上修改的...的操作,前者操作一行或者一列,后者操作每个元素 These are techniques to apply function to element, column or dataframe.
Python的Pandas库为我们提供了强大的数据选择工具。通过DataFrame的结构化数据存储方式,我们可以轻松地按照行或列进行数据的选择。...[0,1] 【例3】请使用Python对如下的二维数组进行提取,选择第一行的数据元素并输出。...关键技术:多维数组中对行的选择,使用[ ]运算符只对行号选择即可,具体程序代码如下所示: 花式索引与布尔值索引 ①布尔索引 我们可以通过一个布尔数组来索引目标数组,以此找出与布尔数组中值为True...程序代码如下所示: 三、算术运算与比较运算 通过一些实例操作来介绍常用的运算函数,包括一个数组内的求和运算、求积运算,以及多个 数组间的四则运算。...首先使用quantile()函 数计算35%的分位数,然后将学生成绩与分位数比较,筛选小于等于分位数的学生,程 序代码如下: 五、数值排序与排名 Pandas也为Dataframe实例提供了排序功能
Pandas 库功能非常强大,特别有助于数据分析与处理,并为几乎所有操作提供了完整的解决方案。一种常见的Pandas函数是pandas describe。...它向用户提供数据集所有特征的描述性统计摘要,尽管其比较常用,但它仍然没有提供足够详细的功能。 Pandas profiling 可以弥补 pandas describe 没有详细数据报告生成的不足。...导入 pandas_profiling from pandas_profiling import ProfileReport 分析DataFrame有两种方法: 可以在 Pandas DataFrame...到目前为止,我们已经了解了如何仅使用一行代码或函数生成DataFrame报告,以及报告包含的所有功能。我们可能有兴趣将此分析导出到外部文件,以便可以将其与其他应用程序集成或将其发布到 Web 上。...Profiling”——从 Pandas DataFrame 生成报告的一站式解决方案。
领取专属 10元无门槛券
手把手带您无忧上云