首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

避免HBase PageFilter踩坑,这几点你必须要清楚 ​

如果已经匹配过对应的列并且对应列的值符合要求,则直接返回INCLUE,表示这一行的这一列要被加入到结果集 2....如果当前列不是要匹配的列。则返回INCLUDE,否则将matchedColumn置为true,代表以及找到了目标列 4....这样,该行下一列再进入这个方法时,到第1步就会直接返回,提高匹配效率 再看filterRow方法,该方法调用时机在filterKeyValue之后,对每一行只会调用一次。...而当kvs为empty时,PageFilter的计数器就不会增加了。再看我们的测试数据,因为行的第一列就是SCVFilter的目标列isDeleted。...从而使得返回的结果看上去是正常的。 而出问题的数据,因为在列isDeleted之前还有列content,所以当一行的isDeleted不满足要求时,kvs也不会为empty。

1.3K20

Pandas 秘籍:1~5

它们允许非常复杂和高度特定的模式匹配。 更多 filter方法带有另一个参数items,该参数采用一列确切的列名。...这几乎与索引运算符完全相同,只是如果其中一个字符串与列名不匹配,则不会引发KeyError。...当从数据帧调用这些相同的方法时,它们会立即对每一列执行该操作。 准备 在本秘籍中,我们将对电影数据集探索各种最常见的数据帧属性和方法。...Python 算术和比较运算符直接在数据帧上工作,就像在序列上一样。 准备 当数据帧直接使用算术运算符或比较运算符之一进行运算时,每列的每个值都会对其应用运算。...当两个传递的数据帧相等时,此方法返回None;否则,将引发错误。 更多 让我们比较掩盖和删除丢失的行与布尔索引之间的速度差异。

37.6K10
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    手把手教你做一个“渣”数据师,用Python代替老情人Excel

    Pandas有很多我们可以使用的功能,接下来将使用其中一些来看下我们的数据集。 1、从“头”到“脚” 查看第一行或最后五行。默认值为5,也可以自定义参数。 ? 2、查看特定列的数据 ?...三、分割:即Excel过滤器 描述性报告是关于数据子集和聚合的,当需要初步了解数据时,通常使用过滤器来查看较小的数据集或特定的列,以便更好的理解数据。...2、查看多列 ? 3、查看特定行 这里使用的方法是loc函数,其中我们可以指定以冒号分隔的起始行和结束行。注意,索引从0开始而不是1。 ? 4、同时分割行和列 ? 5、在某一列中筛选 ?...NaN; inner——仅显示两个共享列重叠的数据。...默认方法; outer——当左侧或右侧DataFrame中存在匹配时,返回所有记录。 ? 以上可能不是解释这个概念的最好例子,但原理是一样的。

    8.4K30

    2020年入门数据分析选择Python还是SQL?七个常用操作对比!

    本文将分别用MySQL和pandas来展示七个在数据分析中常用的操作,希望可以帮助掌握其中一种语言的读者快速了解另一种方法!...中,我们可以使用SELECT语句从表选择数据,结果被存储在一个结果表中,语法如下: SELECT column_name,column_name FROM table_name; 如果不想显示全部的记录...而在pandas中,按照条件进行查找则可以有多种形式,比如可以将含有True/False的Series对象传递给DataFrame,并返回所有带有True的行 ?...在pandas中的等价操作为 ? 注意,在上面代码中,我们使用size()而不是count() 这是因为count()将函数应用于每一列,并返回每一列中非空记录的数量!....: 'value': np.random.randn(4)}) 内连接 内联接使用比较运算符根据每个表共有的列的值匹配两个表中的行,在SQL中实现内连接使用INNER

    3.6K31

    Python数据分析模块 | pandas做数据分析(二):常用预处理操作

    在数据分析和机器学习的一些任务里面,对于数据集的某些列或者行丢弃,以及数据集之间的合并操作是非常常见的. 1、合并操作 pandas.merge pandas.merge(left, right, how...Must be found in both DataFrames....参数: labels : 一个或者一列label值 axis : int类型或者轴的名字,这个轴和labels配合起来,比如,当axis=0的时候,就是行上面的label,当axis=1的时候,就是列上面的...pandas.dataframe.pop DataFrame.pop(item) 作用:返回这个item,同时把这个item从frame里面丢弃。...#对于一个Series来说,行数保持不变,列数变为不同类的个数 #但是每一行还是以编码的形式表示原来的类别 #这个函数返回是一个DataFrame,其中列名为各种类别 s = pd.Series(list

    1.8K60

    深入理解pandas读取excel,txt,csv文件等命令

    如果读取某文件,该文件每行末尾都有带分隔符,考虑使用index_col=False使panadas不用第一列作为行的名称。...如果传入False,当列中存在重复名称,则会导致数据被覆盖。...当对表格的某一行或列进行操作之后,在保存成文件的时候你会发现总是会多一列从0开始的列,如果设置index_col参数来设置列索引,就不会出现这种问题了。...squeeze 如果解析的数据只包含一列,则返回一个Series dtype 数据或列的数据类型,参考read_csv即可 engine 如果io不是缓冲区或路径,则必须将其设置为标识io。...网址不接受https,尝试去掉s后爬去 match 正则表达式,返回与正则表达式匹配的表格 flavor 解析器默认为‘lxml’ header 指定列标题所在的行,list为多重索引 index_col

    12.3K40

    深入理解pandas读取excel,tx

    如果读取某文件,该文件每行末尾都有带分隔符,考虑使用index_col=False使panadas不用第一列作为行的名称。...如果传入False,当列中存在重复名称,则会导致数据被覆盖。...当对表格的某一行或列进行操作之后,在保存成文件的时候你会发现总是会多一列从0开始的列,如果设置index_col参数来设置列索引,就不会出现这种问题了。...squeeze 如果解析的数据只包含一列,则返回一个Series dtype 数据或列的数据类型,参考read_csv即可 engine 如果io不是缓冲区或路径,则必须将其设置为标识io。...网址不接受https,尝试去掉s后爬去 match 正则表达式,返回与正则表达式匹配的表格 flavor 解析器默认为‘lxml’ header 指定列标题所在的行,list为多重索引 index_col

    6.2K10

    VLOOKUP很难理解?或许你就差这一个神器

    、返回近似或精确匹配 - 指示为 1/TRUE 或 0/FALSE) 。...这是未指定值时的默认方法。例如,=VLOOKUP (90,A1:B100,2,TRUE)。完全匹配 - 0/FALSE 搜索第一列中的确切值。...第三步 设置控制参数:选中,在编辑状态下右击 -- 【设置控件格式】,设置最小值、最大值、步长以及单元格链接。其中单元格链接是将所要控制的数值放置在目标单元格内,以方便显示或运用其数值以作他用。...数组形式 INDEX(array, row_num, [column_num]) 返回由行号和列号索引选中的表或数组中元素的值。 当函数 INDEX 的第一个参数为数组常量时,使用数组形式。...的第二参数中它的单元格个数是6个,所以,当IF的条件为1时候,他就会得到6个结果,第三个参数也是这个道理以此类推,它的运算结果可以显示为下图。

    8.1K60

    Stata与Python等效操作与调用

    Series 是 Python 中另外一种数据结构,Series 可以理解为 DataFrame 中其中一列。...在处理字符型变量时,Stata 中使用频率较高的是substr() 、subinstr(),以及用于正则表达式的regexm() 等函数, Stata 提供了丰富的字符串函数,熟悉它们的使用会让字符串清理事半功倍...任何涉及 np.nan 的比较都始终为 False ,即使 np.nan == np.nan 。...要在 DataFrame 列中查找缺失值,使用以下任何一种: df[].isnull() 返回一个每行值为 True 和 False 值的向量 df[]。...嵌入代码其实和窗口交互的本质是相同的:当遇见 python 或 python: 时,会进入 python 交互环境,进而逐行执行 Python 代码,直到遇见 end 才跳出 Python 环境返回到

    10K51

    Pandas数据分析包

    71000, 'Oregon':16000, 'Utah':5000} obj3 = Series(sdata) print(obj3) print('使用字典生成Series,并额外指定index,不匹配部分为...它们大部分都属于约简和汇总统计,用于从 Series 中提取单个值,或从 DataFrame 的行或列中提取一个 Series。...比如 DataFrame.mean(axis=0,skipna=True) 方法,当数据集中存在 NA 值时,这些值会被简单跳过,除非整个切片(行或列)全是 NA,如果不想这样,则可以通过 skipna...如果两个 变量的变化趋势一致,也就是说如果其中一个大于自身的期望值时另外一个也 大于自身的期望值,那么两个变量之间的协方差就是正值;如果两个变量的变 化趋势相反,即其中一个变量大于自身的期望值时另外一个却小于自身的期望.../pandas-docs/stable/merging.html 通过apply进行数据预处理 df['A'] = df['A'].apply(str.upper) 通过去重进行数据清洗 查看一列唯一值

    3.1K71

    python第十二周:MySql

    在一个数据库中的表看起来像一个简单的电子表格 #列:一列包含了相同的数据 #冗余:存储两倍数据,冗余降低了性能,但提高了数据的安全性 #主键:主键是唯一的。...索引是对数据库表中一列或多列值进行排序的              一种结构。类似书籍的目录 #参照完整性:参照的完整性要求关系中不允许引用不存在的实体。...这说明它们没  有字符集,并且排序和比较基于列值字节的数值值。 *BLOB是一个二进制大对象,可以容纳可变数量的数据。...#MySQL null值处理 为处理当提供的查询条件时null时,MySQL提供了三大运算符 名称 描述 IS NULL 当列的值时NULL,返回true IS NOT NULL 当列的值不是NULL时...,返回true 比较操作符,当比较的两个值为null时返回true 在MySQL中,NULL值于任何其他值的比较(即使是NULL)永远返回false #MySQL联合查询 描述:MySQL UNION

    1.3K30

    (数据科学学习手札69)详解pandas中的map、apply、applymap、groupby、agg

    (当调用DataFrame.apply()时,apply()在串行过程中实际处理的是每一行数据而不是Series.apply()那样每次处理单个值),注意在处理多个值时要给apply()添加参数axis...当变量为1个时传入名称字符串即可,当为多个时传入这些变量名称列表,DataFrame对象通过groupby()之后返回一个生成器,需要将其列表化才能得到需要的分组后的子集,如下面的示例: #按照年份和性别对婴儿姓名数据进行分组...注意这里的year、gender列是以索引的形式存在的,想要把它们还原回数据框,使用reset_index(drop=False)即可: ?...列的最小值、最大值以及中位数 data['count'].agg(['min','max','median']) ?  ...可以注意到虽然我们使用reset_index()将索引列还原回变量,但聚合结果的列名变成红色框中奇怪的样子,而在pandas 0.25.0以及之后的版本中,可以使用pd.NamedAgg()来为聚合后的每一列赋予新的名字

    5.1K60

    不再纠结,一文详解pandas中的map、apply、applymap、groupby、agg...

    输出多列数据 有些时候我们利用apply()会遇到希望同时输出多列数据的情况,在apply()中同时输出多列时实际上返回的是一个Series,这个Series中每个元素是与apply()中传入函数的返回值顺序对应的元组...其主要使用到的参数为by,这个参数用于传入分组依据的变量名称,当变量为1个时传入名称字符串即可。...当为多个时传入这些变量名称列表,DataFrame对象通过groupby()之后返回一个生成器,需要将其列表化才能得到需要的分组后的子集,如下面的示例: #按照年份和性别对婴儿姓名数据进行分组 groups...注意这里的year、gender列是以索引的形式存在的,想要把它们还原回数据框,使用reset_index(drop=False)即可: ?...可以注意到虽然我们使用reset_index()将索引列还原回变量,但聚合结果的列名变成红色框中奇怪的样子,而在pandas 0.25.0以及之后的版本中,可以使用pd.NamedAgg()来为聚合后的每一列赋予新的名字

    5K10

    不再纠结,一文详解pandas中的map、apply、applymap、groupby、agg...

    有些时候我们利用apply()会遇到希望同时输出多列数据的情况,在apply()中同时输出多列时实际上返回的是一个Series,这个Series中每个元素是与apply()中传入函数的返回值顺序对应的元组...其主要使用到的参数为by,这个参数用于传入分组依据的变量名称,当变量为1个时传入名称字符串即可。...当为多个时传入这些变量名称列表,DataFrame对象通过groupby()之后返回一个生成器,需要将其列表化才能得到需要的分组后的子集,如下面的示例: #按照年份和性别对婴儿姓名数据进行分组 groups...'].max() 注意这里的year、gender列是以索引的形式存在的,想要把它们还原回数据框,使用reset_index(drop=False)即可: 结合apply() 分组后的结果也可以直接调用...) 可以注意到虽然我们使用reset_index()将索引列还原回变量,但聚合结果的列名变成红色框中奇怪的样子,而在pandas 0.25.0以及之后的版本中,可以使用pd.NamedAgg()来为聚合后的每一列赋予新的名字

    5.9K31

    20个能够有效提高 Pandas数据分析效率的常用函数,附带解释和例子

    本文将介绍20个常用的 Pandas 函数以及具体的示例代码,助力你的数据分析变得更加高效。 ? 首先,我们导入 numpy和 pandas包。...Insert 当我们想要在 dataframe 里增加一列数据时,默认添加在最后。当我们需要添加在任意位置,则可以使用 insert 函数。...当 frac=0.5时,将随机返回一般的数据。 sample2 = df.sample(frac=0.5) sample2 ? 为了获得可重复的样品,我们可以指定random_state参数。...还将有一列显示测量值。我们可以通过使用'melt'函数轻松实现: df_wide.melt(id_vars=['city']) df ? 变量名和列名通常默认给出。...Memory_usage Memory_usage()返回每列使用的内存量(以字节为单位)。考虑下面的数据,其中每一列有一百万行。

    5.7K30

    Pandas

    分组后的对象其实可以视作一个新的 df 或者 se(SeriesGroupBy object),名字即为分组键的值(如果是通过传递函数进行分组那么索引值就是函数的返回值),当数据集比较大时,我们有时候只希望对分组结果的部分列进行运算...以加法为例,它会匹配索引相同(行和列)的进行算术运算,再将索引不匹配的数据视作缺失值,但是也会添加到最后的运算结果中,从而组成加法运算的结果。...) 缺失值补充 df.isnull().T.any() == True返回缺失值所在行的索引 也可以使用 pandas.DataFrame.fillna()方法进行常量填补() 输入字典来指定每一列的填补值...在正常使用过程中,agg 函数和 aggregate 函数对 DataFrame 对象操作时功能几乎完全相同,因此只需要掌握其中一个函数即可。它们的参数说明如下表。...当我们用数值来进行分类时,进行统计分析时如果不希望作为类别的数值列也被进行统计分析,可以专门将数值类的列转为非数值型数据(参考综合实例–iris 数据集统计分析代码块第 97 行)。

    9.2K30

    (数据科学学习手札72)用pdpipe搭建pandas数据分析流水线

    图10 FreqDrop:   这个类用于删除在指定的一列数据中出现频次小于所给阈值对应的全部行,主要参数如下: threshold:int型,传入频次阈值,低于这个阈值的行将会被删除 column...型,决定是否在计算完成后把旧列删除,默认为True,即对应列的计算结果直接替换掉对应的旧列 suffix:str型,控制新列后缀名,当drop参数设置为False时,结果列的列名变为其对应列+suffix...参数指定的后缀名;当drop设置为False时,此参数将不起作用(因为新列直接继承了对应旧列的名称) result_columns:str或list,与columns参数一一对应的结果列名称,当你想要自定义结果新列名称时这个参数就变得非常有用...colbl_sfx:str型,控制新列后缀名,当drop参数设置为False时,结果列的列名变为其对应列+suffix参数指定的后缀名;当drop设置为False时,此参数将不起作用(因为新列直接继承了对应旧列的名称...:str型,用于定义结果列的名称(因为ApplyToRows作用的对象是一整行,因此只能形成一列返回值),默认为'new_col' follow_column:str型,控制结果列插入到指定列名之后,默认为

    1.4K10
    领券