这次是在上一篇的基础上增加的,所以导包这些啥的就跳过了研究了一下代码,发现主要的区别就在于增加data的时候,第二个参数传递的是一个数组,然后就变成了堆叠条形图。...最后的代码: XML布局文件: <?xml version="1.0" encoding="utf-8"?...layout_width="match_parent" android:layout_height="match_parent" android:text="这是一个堆叠条形图..." android:layout_height="150dp" /> MainActivity,这里只把堆叠图的代码放出来了...); } duiDieChart.setFitBars(true); duiDieChart.invalidate(); } } 看着这篇文章来的:
在 Python 中创建条形图追赶动画 方法一:使用 pause() 函数 方法二:使用 FuncAnimation() 函数 线性图动画: Python 中的条形图追赶动画 Python...中的散点图动画: 条形图追赶的水平移动: 评论区抽粉丝送书啦 使用 Matplotlib 创建动画有两种方法: 使用 pause() 函数 使用 FuncAnimation() 函数 方法一:使用...中的条形图追赶动画 在此示例中,我们将创建一个简单的条形图动画,它将显示每个条形的动画。...: 在这个例子中,我们将使用随机函数在 python 中动画散点图。...不同的城市会有不同的条形图,条形图追赶将从 1990 年到 2018 年迭代。 我从人口最多的数据集中选择了最高城市的国家。
动画是提高可视化吸引力和用户吸引度的优秀手段。它能够以有意义的方式展示数据可视化。Python提供了强大的库,使我们能够轻松创建动画可视化。...使用Matplotlib创建动画有两种主要方法:使用pause()函数使用FuncAnimation()函数 方法一:使用pause()函数在这种方法中,我们使用matplotlib库的pyplot模块中的...中的条形图追赶动画在这个例子中,我们展示了一个条形图动画,每个条形图都有自己的动画效果。...中的散点图动画:在这个例子中,我们使用随机函数在Python中创建了一个动画散点图。...:在这个例子中,我们使用城市数据集中最高人口的城市创建了一个条形图竞赛动画。
SwiftUI中的水平条形图 水平条形图以矩形条的形式呈现数据类别,其宽度与它们所代表的数值成正比。本文展示了如何在垂直条形图的基础上创建一个水平柱状图。 水平条形图不是简单的垂直条形图的旋转。...在Numbers 等应用程序中,水平条形图被定义为独立的图表类型,而不是垂直条形图。除了条形差异外,x轴和y轴的格式也需要不同。...Chart in SwiftUI Hide Bar Chart Axes in SwiftUI Bar Chart with multiple data sets in SwiftUI SwiftUI 中的水平条形图...将条形图转换为水平 水平条形图不仅仅是在垂直条形图上的配置,有一些元素是可以重复使用的。...在创建垂直条形图时学到的技术可以重复使用,但最好将水平条形图视为与垂直条形图不同的图表。当我们深入到轴等组件时,可以看到两个图表中的轴线都是一样的,但是它们的标签和定位在x和y之间是换位的。
选自TowardsDataScience 作者:William Koehrsen 机器之心编译 参与:Nurhachu Null、路 本文介绍了如何在 Python 中利用散点图矩阵(Pairs Plots...散点图矩阵允许同时看到多个单独变量的分布和它们两两之间的关系。散点图矩阵是为后续分析识别趋势的很棒方法,幸运的是,用 Python 实现也是相当简单的。...本文,我们将介绍如何使用 Seaborn 可视化库(https://seaborn.pydata.org/)在 Python 中启动和运行散点图矩阵。...这张图具有更多的信息,但是还存在一些问题:正如对角线上看到的一样,我认为堆叠的直方图可解释性不是很好。展示来自多类别的单变量分布的一个更好方法就是密度图(density plot)。...对角线上的密度图使得对比洲之间的分布相对于堆叠的直方图更加容易。改变散点图的透明度增加了图的可读性,因为这些图存在相当多的重叠(ovelapping)。 现在是默认散点图矩阵的最后一个例子。
Power BI内置的表格矩阵可以使用条件格式中的数据条模拟条形图,如下图所示: 这种操作方式的核心缺点是条形高度无法调整。...以下是完整度量值,把度量值放入条件格式图标即可正常显示: SVG表格条形图 = VAR MinNegative = MINX ( FILTER ( ALLSELECTED ( '店铺信息'[...Max_Width ) & "' y2='100' stroke='black' stroke-width='3'/> " RETURN SVG 设置方式如下图所示,度量值中的增长率替换为你模型中的指标可以复用...目前Power BI的条件格式图标仅支持正方形样式,使得显示效果不能最优,本文的方法算是夹缝中求突破。...所谓一通百通,度量值也可不用在表格中,略微修改后使用HTML Content放大显示: ----
seaborn简介Seaborn是一个Python数据可视化库,建立在Matplotlib之上,专注于创建美观、有吸引力的统计图表。...Seaborn提供了一系列内置的图表样式和颜色主题,使得用户无需费力地进行定制即可创建各种类型的图表,包括散点图、折线图、条形图、箱型图、核密度估计图等。...总体而言,Seaborn为Python用户提供了一种优雅而强大的方式来展示数据,使得数据可视化成为数据科学工作流程中不可或缺的一部分。...:g = sns.PairGrid(iris.iloc[:,:-1])g.map(sns.scatterplot)图片在tips数据中,存在三个数值型字段:In 19:tips.dtypesOut19:...:In 20:g = sns.PairGrid(tips) g.map(sns.scatterplot)图片对角线绘制不同图形在对角线和非对角线分别绘制不同的图形:In 21:g = sns.PairGrid
Seaborn简介 Seaborn是基于matplotlib的图形可视化python包。它提供了一种高度交互式界面,便于用户能够做出各种有吸引力的统计图表。...,然后消除重叠的图,使曲线下的面积为1来创建的 计数图(条形图) 计数图和直方图很像,直方图通过对数据分组描述分布,计数图是对离散变量(分类变量)计数。 ...Seaborn 双变量数据可视化 在seaborn中,创建散点图的方法有很多 创建散点图可以使用regplot函数。...使用Seaborn的jointplot绘制蜂巢图,和使用matplotlib的hexbin函数进行绘制 2D核密度图和kdeplot类似,但2D核密度图课展示两个变量 条形图也可以用于展现多个变量,barplot...函数会为单变量绘制直方图,双变量绘制散点图 sns.pairplot(tips) pairplot的缺点是存在冗余信息,图的上半部分和下半部分相同 可以使用pairgrid手动指定图的上半部分和下半部分
语言之可视化①④一页多图(1) R语言之可视化①⑤ROC曲线 R语言之可视化①⑥一页多图(2) R语言之可视化①⑦调色板 R语言之可视化①⑧子图组合patchwork包 R语言之可视化①⑨之ggplot2中的图例修改...R语言之可视化(20)之geom_label()和geom_text() R语言之可视化(21)令人眼前一亮的颜色包 R语言之可视化(22)绘制堆积条形图 R语言之可视化(23)高亮某一元素 R语言之可视化...)蜜蜂图 R语言之可视化(29)如何更改ggplot2中堆积条形图中的堆积顺序 问题:如何控制由ggplot2创建的堆积条的堆积顺序。...解决方案 堆叠在数据框的原始顺序中 ra.melt$quality <- factor(ra.melt$quality, levels = ra$quality) p 堆叠顺序但同时保留图例的顺序,则使用参数* position_stack(reverse = TRUE)* p <- ggplot(ra.melt, aes(x = variable, y
上次出了一个在网站「Flourish」画动态条形图的文章【动态条形图视频教程】,需要登录网址很多人可能觉得不方便,现在有大佬出了个Python包,只需几行代码就能搞定动态条形图,非常强大,给大家分享下。...【AI入门学习】,回复「条形图」即可获取。...make_chart.py文件中,加入如下三行代码。...'#00c5d2', '#a64dff', '#4e70f0', '#f95dba', '#ffce2b' ] } 获取文章中的数据...,关注公众号【AI入门学习】,回复「条形图」即可 【完】
这篇文章我们进行pandas可视化化的操作, 在这里我只是简单画几个图,表面pandas也是可以用来画图的,后期会在更新matlab等数据可视化的python库的。...二、条形图 利用plot.bar() # 条形图 df.plot.bar() ?...堆叠的条形图: 设置stacked=True就OK啦 # 堆叠条形图 df.plot.bar(stacked=True) ?...水平条形图: # 水平条形图 df = pd.DataFrame(np.random.rand(10, 4), columns=['a','b','c','d']) df.plot.barh(stacked...以上就是利用pandas来进行可视化的一些函数,感觉图很丑, 不是很推荐使用的哈~_~
pandas库是Python数据分析的核心库 它不仅可以加载和转换数据,还可以做更多的事情:它还可以可视化 pandas绘图API简单易用,是pandas流行的重要原因之一 Pandas 单变量可视化...单变量可视化, 包括条形图、折线图、直方图、饼图等 数据使用葡萄酒评论数据集,来自葡萄酒爱好者杂志,包含10个字段,150929行,每一行代表一款葡萄酒 加载数据 条形图是最简单最常用的可视化图表 在下面的案例中... 直方图看起来很像条形图, 直方图是一种特殊的条形图,它可以将数据分成均匀的间隔,并用条形图显示每个间隔中有多少行, 直方图柱子的宽度代表了分组的间距,柱状图柱子宽度没有意义 直方图缺点:将数据分成均匀的间隔区间...堆叠图(Stacked plots) 展示两个变量,除了使用散点图,也可以使用堆叠图 堆叠图是将一个变量绘制在另一个变量顶部的图表 接下来通过堆叠图来展示最常见的五种葡萄酒 从结果中看出,最受欢迎的葡萄酒是...: 通过透视表找到每种葡萄酒中,不同评分的数量 : 从上面的数据中看出,行列分别表示一个类别变量(评分,葡萄酒类别),行列交叉点表示计数,这类数据很适合用堆叠图展示 折线图在双变量可视化时,仍然非常有效
前提是绘图数据已做了统计汇总); position:用于设置条形图的摆放位置,默认为'stack',表示绘制堆叠条形图;如果指定为'dodge',表示绘制水平交错条形图;如果为'fill',表示绘制百分比堆叠条形图...如果绘图数据涉及的是双离散变量单数值变量或者双数值变量单离散变量时,也可以借助于geom_bar函数绘制堆叠条形图、百分比堆叠条形图、交错条形图和对比条形图。...然而,在实际的企业环境中,这样的图形出现的频次并不是很高,因为绝对数量的堆叠条形图并不能够达到刺激效果。读者不妨使用下面介绍的百分比堆叠条形图。...双离散单数值的百分比堆叠条形图 # 明细数据--双离散单数值变量的百分比堆叠条形图 ggplot(data = weather2017, mapping = aes(x = aqiInfo, fill...如上图所示,浅色且较宽的条形图可以用作参考对象(如数据中的目标销售额),深色且较窄的条形图可以用作比较对象(如数据中的实际销售额)。通过这种图形,就能够一眼发现参考对象与比较对象之间的差异。
当类别数太多时,条形图将变得很杂乱,难以理解。你可以基于条形的数量观察不同类别之间的区别,不同的类别可以轻易地分离以及用颜色分组。我们将介绍三种类型的条形图:常规、分组和堆叠条形图。...常规条形图如图 1 所示。在 barplot() 函数中,x_data 表示 x 轴上的不同类别,y_data 表示 y 轴上的条形高度。误差条形是额外添加在每个条形中心上的线,可用于表示标准差。...然后我们循环地遍历每一个组,并在 X 轴上绘制柱体和对应的值,每一个分组的不同类别将使用不同的颜色表示。 ? 分组条形图 堆叠条形图非常适合于可视化不同变量的分类构成。...在下面的堆叠条形图中,我们比较了工作日的服务器负载。通过使用不同颜色的方块堆叠在同一条形图上,我们可以轻松查看并了解哪台服务器每天的工作效率最高,和同一服务器在不同天数的负载大小。...Matplotlib 函数 boxplot() 为 y_data 的每一列或 y_data 序列中的每个向量绘制一个箱线图,因此 x_data 中的每个值对应 y_data 中的一列/一个向量。 ?
当类别数太多时,条形图将变得很杂乱,难以理解。你可以基于条形的数量观察不同类别之间的区别,不同的类别可以轻易地分离以及用颜色分组。我们将介绍三种类型的条形图:常规、分组和堆叠条形图。...常规条形图如图 1 所示。在 barplot() 函数中,x_data 表示 x 轴上的不同类别,y_data 表示 y 轴上的条形高度。误差条形是额外添加在每个条形中心上的线,可用于表示标准差。...然后我们循环地遍历每一个组,并在 X 轴上绘制柱体和对应的值,每一个分组的不同类别将使用不同的颜色表示。 分组条形图 堆叠条形图非常适合于可视化不同变量的分类构成。...在下面的堆叠条形图中,我们比较了工作日的服务器负载。通过使用不同颜色的方块堆叠在同一条形图上,我们可以轻松查看并了解哪台服务器每天的工作效率最高,和同一服务器在不同天数的负载大小。...Matplotlib 函数 boxplot() 为 y_data 的每一列或 y_data 序列中的每个向量绘制一个箱线图,因此 x_data 中的每个值对应 y_data 中的一列/一个向量。
虽然说特征工程很大程度上是经验工程,跟具体业务相关,但是我们可以根据一些思路来进行,以下是我在实践过程中总结出来的一些思路,希望能给大家带来一点启发。...思路与过程 0.概览数据 使用数据可视化工具对数据进行概览 0.1 对原始数据进行概览 常用的概览方法: dataset.describe(): 查看每种属性的总数,平均值,标准差,25%,50%,75%...: 空数据太多,直接去掉 填充 平均数/众数/最多的值 0.2 使用图表进行概览 常用图表有: 条形图 countplot barplot 饼状图 pie 散点图 scatter 分布图(seaborn.distplot...) 热力图+协方差矩阵 heatmap 对比图 PairGrid 使用完热力图后将与目标属性最相关的几个属性做一个对比图,两两对比 1.特征构建 根据相关领域的经验和概览得到的信息,决定怎么对属性进行组合比较合适...(方差太小说明该特征的区别不明显)
一个堆叠条形图可视化的例子 在上面说到堆叠条形图的时候,我们说到,由于内部比例相对变化的问题。所以不建议用堆叠的条形图来可视化时间序列的数据。但是如果只有两个分组的话,那么就可以使用堆叠的条形图了。...例如在观察一个地方一段时间男女比例构成的时候,我们就可以使用堆叠的条形图的。 ? 对于一个连续性多分组的比例数据,如果使用堆叠的条形图的话,会是很多并排的条形,可视化效果不好。...这个时候我们就可以使用堆叠密度图来进行可视化。 例如我们在可视化健康状态和年龄的时候,其中年龄可以当作连续性变量,如下图所有,利用堆叠密度图的可视化效果还是不错的。...但是,同样的对于这个图对于都是相对的变化,所以之间的绝对变化很难观察出来。 4....将比例分别可视化为总体的一部分 并排条形图的问题是,它们无法清晰地看到各个亚组相对于整体的变化,而堆叠式条形图的问题在于,由于它们具有不同的基线,因此无法轻松比较不同的条形图。
Matplotlib是一个流行的Python库,可以很容易地用于创建数据可视化。然而,设置数据、参数、图形和绘图在每次执行新项目时都可能变得非常混乱和繁琐。...使用条形图(而不是散点图)可以让我们清楚地看到每个箱子频率之间的相对差异。...使用箱子(离散化)真的帮助我们看到“更大的画面”,如果我们使用所有没有离散箱子的数据点,在可视化中可能会有很多噪音,使我们很难看到到底发生了什么。 ? 假设我们要比较数据中两个变量的分布。...条形图 当您试图将类别很少(可能少于10个)的分类数据可视化时,条形图是最有效的。如果我们有太多的类别,那么图中的条形图就会非常混乱,很难理解。...它们非常适合分类数据,因为您可以根据条形图的大小;分类也很容易划分和颜色编码。我们将看到三种不同类型的条形图:常规的、分组的和堆叠的: ?
但如果我们想用长度来展示数据,为什么不直接将环状图展开,制作成堆叠条形图呢?在堆叠条形图中,条形并排展示,这样跨组比较就变得容易多了。 11....忽视堆叠条形图的重新排序 堆叠条形图在展示比例数据时非常有用,常用于展示社区结构、人口结构或混合分析等。这种视觉展示方式涉及到一系列样本,每个样本都包含多个类别的成员。...混淆堆叠条形图和均值分离图 有时候,一个图表如果试图同时展示太多信息,反而会变得混乱且效果不佳。一个典型的例子是将堆叠条形图和均值分离图混为一谈。...中间的堆叠条形图存在问题,主要是因为它试图同时完成两个不同的数据可视化任务。当误差条和点被叠加到堆叠条上时,就不清楚哪些误差条和点正在被比较。...这个图表清晰地展示了正在比较的内容。正如第一个堆叠条形图所示,化学处理显著增加了深蓝色果实的比例,减少了较浅颜色果实的比例。
简介 Seaborn 是 Python 中一个非常受用户欢迎的可视化库。...Seaborn 中的数据分布型图绘制函数: 分类数据型图 在面对数据组中具有离散型变量(分类变量)的情况时,我们可使用以 X 轴或 Y 轴作为分类轴的绘图函数来绘制分类数据型图。...() 函数 Seaborn 提供的 PairGrid () 函数主要用于绘制数据集中具有成对关系的多子图网格型图。...在 PairGrid () 函数中,每个行和列都会被分配一个不同的变量,这就导致绘制结果为显示数据集中成对变量间关系的图。这种图也被称为“散点图矩阵”。...,只更新样式中的一部分参数。
领取专属 10元无门槛券
手把手带您无忧上云