首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

Oracle SQL在指定持续时间内获取前一天和今天之间的记录

Oracle SQL是一种关系型数据库管理系统,用于管理和操作Oracle数据库。它支持结构化查询语言(SQL),可以用于从数据库中检索、插入、更新和删除数据。

要获取前一天和今天之间的记录,可以使用Oracle SQL中的日期函数和条件语句来实现。以下是一个示例查询:

代码语言:txt
复制
SELECT *
FROM your_table
WHERE date_column >= TRUNC(SYSDATE) - 1
  AND date_column < TRUNC(SYSDATE)

在这个查询中,your_table是要查询的表名,date_column是包含日期的列名。TRUNC(SYSDATE)函数用于获取当前日期的零点,SYSDATE函数用于获取当前日期和时间。通过将当前日期减去1,我们可以得到前一天的日期。使用大于等于和小于条件,我们可以获取前一天和今天之间的记录。

对于Oracle数据库,还有一些其他的日期函数可以使用,如ADD_MONTHSEXTRACTLAST_DAY等,可以根据具体需求进行调整。

推荐的腾讯云相关产品是TencentDB for Oracle,它是腾讯云提供的一种高性能、高可用的Oracle数据库解决方案。您可以通过以下链接了解更多信息:TencentDB for Oracle

页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

  • Neuron:背侧流中θ振荡的选择性夹带可提高听觉工作记忆表现

    已经证实背侧流(Dorsal Stream)在工作记忆中操作听觉信息的作用。然而,该网络中的振荡动力学及其与行为的因果关系仍未明确。通过同步使用MEG/EEG,我们发现在需要比较两种不同时间顺序模式差异的任务中,背侧流中θ振荡可以预测被试的操作能力。我们利用θ节律性TMS与EEG结合的方法,在两种刺激之间的静息态间隔内,对MEG识别目标(左侧顶内沟)进行脑振荡与行为之间的因果关系研究。节律性TMS引发了θ振荡并提高了被试的准确性。TMS诱发的振荡夹带随着行为增强而增加,而且这两种增强都随着被试的基线水平而产生变化。这些结果在旋律对比控制任务(melody-comparison control task)中没有观察到,在非节律性TMS中也没有观察到。这些数据表明,背侧流中的θ活动与记忆操作有因果关系。本文发表在Neuron杂志。

    02

    重度抑郁症患者的非快速眼动睡眠

    睡眠紊乱是重度抑郁症(MDD)的一个关键症状。目前的文献对快速眼动(REM)睡眠的改变进行了很好的描述,但对非快速眼动(non-REM)睡眠的改变却知之甚少。此外,睡眠障碍与MDD的各种认知症状有关,但non-REM睡眠EEG的哪些特征导致了这一点目前尚不清楚。我们综合分析了三个独立收集的数据集(216名被试的N = 284个数据,)中两个中央通道的non-REM睡眠EEG特征。这项探索性和描述性的研究纳入了年龄范围广泛、抑郁症持续时间和严重程度不同、用药或未用药、以及年龄和性别与健康对照组相匹配的MDD患者。我们探讨了睡眠结构的变化,包括睡眠阶段和周期、频谱功率、睡眠纺锤波、慢波(SW)和SW-纺锤波耦合。接下来,我们分析了这些睡眠特征与抑郁症严重程度和程序性记忆的夜间巩固的关系。总的来说,与对照组相比,患者的non-REM睡眠结构没有发现重大的系统性改变。对于non-REM睡眠的微观结构,我们观察到与对照组相比,未用药患者的纺锤波振幅较高,并且在开始使用抗抑郁药物后,SW较长,振幅较低,SW-纺锤波耦合更分散。此外,长期(而非短期)的药物治疗似乎会降低纺锤波的密度。用药患者夜间程序性记忆巩固受损,这与较低的睡眠纺锤波密度有关。我们的结果表明,MDD的non-REM睡眠 EEG的改变可能比以前报道的更精细。我们在抗抑郁药物摄入和年龄的背景下讨论这些发现。

    05

    PNAS:描绘自杀想法的时间尺度

    本研究旨在利用实时监测数据和多种不同的分析方法,确定自杀思维的时间尺度。参与者是105名过去一周有自杀念头的成年人,他们完成了一项为期42天的实时监测研究(观察总数=20,255)。参与者完成了两种形式的实时评估:传统的实时评估(每天间隔数小时)和高频评估(间隔10分钟超过1小时)。我们发现自杀想法变化很快。描述性统计和马尔可夫转换模型都表明,自杀念头的升高状态平均持续1至3小时。个体在报告自杀念头升高的频率和持续时间上表现出异质性,我们的分析表明,自杀念头的不同方面在不同的时间尺度上运作。连续时间自回归模型表明,当前的自杀意图可以预测未来2 - 3小时的自杀意图水平,而当前的自杀愿望可以预测未来20小时的自杀愿望水平。多个模型发现,自杀意图升高的平均持续时间比自杀愿望升高的持续时间短。最后,在统计建模的基础上,关于自杀思想的个人动态的推断显示依赖于数据采样的频率。例如,传统的实时评估估计自杀欲望的严重自杀状态持续时间为9.5小时,而高频评估将估计持续时间移至1.4小时。

    03
    领券