首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

在毕设中学习02——numpy多维数组的切片,形态变化,维度交换

2022.5.22 文章目录 构建三维数组,并按照指定维度输出 生成一组随机数,摆放为指定矩阵形式 Python中range(start,stop,步长) 生成指定范围,指定步长的一组数 多维数组切片—...—过滤信息 多维矩阵的维度顺序变换 多维矩阵的切片 多维矩阵的形态变化 构建三维数组,并按照指定维度输出 import numpy as np # a=np.arange(0,60,1,dtype=np.floating...,在坐标轴上是反方向输出的) [0, -1, -2, -3, -4, -5, -6, -7, -8, -9] 生成指定范围,指定步长的一组数 a=np.arange(1,20,2) import numpy...#输出 (10,) [[ 1 3 5 7 9] [11 13 15 17 19]] 多维数组切片——过滤信息 import numpy as np #按照表达式j*10+i,生成6*6矩阵...可以获取任意维度的任意片段数据 比如这个a的第二维度的9表示数据有9个通道(就像RGB图像有3个通道) 我只要第前三个通道的数据,可以这么写 c=a[,[0:3],] c的形状就变成了(7352, 3

68030

数据科学 IPython 笔记本 9.5 NumPy 数组上的计算:通用函数

9.5 NumPy 数组上的计算:通用函数 本节是《Python 数据科学手册》(Python Data Science Handbook)的摘录。...也就是说,它为数据数组的最优计算,提供了一个简单而灵活的接口。 NumPy 数组的计算速度非常快,也可能非常慢。使其快速的关键是使用向量化操作,通常通过 NumPy 的通用函数(ufunc)实现。...实现方式为,简单地对数组执行操作,然后将该操作应用于每个元素。这种向量化方法旨在将循环推入 NumPy 背后的编译层,从而加快执行速度。...探索 NumPy ufunc ufunc有两种形式:一元ufunc,它在单个输入上运行,二元ufunc,在两个输入上运行。我们将在这里看到这两种函数的例子。...ufunc:了解更多 通用函数的更多信息(包括可用函数的完整列表)可在 NumPy 和 SciPy 文档站点上找到。

93820
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    【深度学习】 NumPy详解(二):数组操作(索引和切片、形状操作、转置操作、拼接操作)

    Python本身是一种伟大的通用编程语言,在一些流行的库(numpy,scipy,matplotlib)的帮助下,成为了科学计算的强大环境。...数学函数:Numpy提供了许多常用的数学函数,如三角函数、指数函数、对数函数等。这些函数可以直接应用于整个数组,而无需编写循环。...数据操作:Numpy提供了很多用于操作数组的函数,如切片、索引、排序、去重等。 Numpy广泛应用于科学计算、数据分析、机器学习等领域。...使用.T属性 在NumPy中,多维数组对象(ndarray)具有一个名为.T的属性,可以用于进行转置操作。该属性返回原始数组的转置结果,即行变为列,列变为行。...它将输入的数组沿着垂直方向堆叠起来,生成一个新的数组。

    11910

    函数指针数组在实现转移表时的应用:以计算器为例

    在C语言中,函数名代表函数的地址,因此可以创建一个数组来存储这些地址(即函数指针),然后通过索引访问并调用相应的函数。         ...函数指针数组通常用于实现转移表或分派表,这有助于根据输入或其他条件动态选择要执行的函数。例如,在一个计算器程序中,可以根据用户输入的操作符(如加、减、乘、除)来调用相应的数学运算函数。...它通过将每个分支的逻辑封装成单独的函数,并将这些函数的地址存储在一个数组中,从而避免了复杂的if-else或switch-case语句。...例如,在一个简单的计算器程序中,转移表可以用来根据用户输入的操作符(如加、减、乘、除)来调用相应的数学运算函数。...总结:转移表是函数指针的一个非常实用的应用,它使得代码更加模块化,便于扩展和维护,同时也可能带来性能上的优化。

    11310

    Python数据分析 | Numpy与2维数组操作

    .png] “view”表示数组切片时并未进行任何复制,在修改数组后,相应更改也将反映在切片中。...二、轴参数 在很多矩阵运算操作中,NumPy可以实现跨行或跨列的操作。为了适用任意维数的数组,NumPy引入了axis的概念。...axis参数的值实际上就是维度值,如第一个维是axis=0 ,第二维是axis=1,依此类推。因此,在2维数组中,axis=0指列方向,axis=1指行方向。...[99a452b7ce4fa8dfb30693231bbd6090.png] meshgrid函数接受任意一组索引,通过mgrid切片和indices索引生成完整的索引范围,然后,fromfunction...除了在二维或三维网格上初始化函数外,网格还可以用于索引数组: [5fbeb8c06cf6972f068787fd31d70184.png] 以上方法在稀疏网格中同样适用。

    1.8K41

    猿创征文|数据导入与预处理-第2章-numpy

    NumPy 的数组中比较重要 ndarray 对象属性有: numpy的常用数据类型 3 创建数组 3.1 根据现有数据类型创建数组 numpy中使用array()函数创建一个数组,该函数需要接收一个列表或元组...形状相同的数组之间的任何算术运算都会应用到各元素,同样地,数组与标量执行算术运算时也会将标量应用到各元素,以方便各元素与标量直接进行相加、相减、相乘、相除等基础操作。...约减之后,数据的个数在总量上是减少的。 在这里,“约减”的“减”并非减法之意,而是元素的减少。...其他max(),min(),mean()邓函数的轴方向约减也类似。...numpy中数组通过访问T属性可实现简单的转置操作,即互换两个轴方向的元素,并返回一个互换后的新数组。

    5.8K30

    Pandas数据处理——渐进式学习1、Pandas入门基础

    数组 数据统计摘要describe函数 横纵坐标转换位置 反向排列列数据 获取列数据 使用[]数组切片 用标签提取一行数据 用标签选择多列数据 用标签切片,包含行与列结束点 提取标量值 快速访问标量:效果同上...Pandas处理,在最基础的OpenCV中也会有很多的Pandas处理,所以我OpenCV写到一般就开始写这个专栏了,因为我发现没有Pandas处理基本上想好好的操作图片数组真的是相当的麻烦,可以在很多...,也可以忽略标签,在 Series、DataFrame 计算时自动与数据对齐; 强大、灵活的分组(group by)功能:拆分-应用-组合数据集,聚合、转换数据; 把 Python 和 NumPy 数据结构里不规则...此外,通用 API 函数的默认操作要顾及时间序列与截面数据集的方向。...多维数组存储二维或三维数据时,编写函数要注意数据集的方向,这对用户来说是一种负担;如果不考虑 C 或 Fortran 中连续性对性能的影响,一般情况下,不同的轴在程序里其实没有什么区别。

    2.2K50

    NumPy基础

    参考链接: Python中的numpy.log1p 文章目录  一、创建数组二、数组操作类型1. 数组属性2. 数组索引:获取单个元素3. 切片4. 数组的变形5....#验证是否存在元素为真 np.all             #验证所有元素是否为真 聚合函数参数axis用于指定沿着哪个轴的方向进行聚合。...(如标量与数组相加)  广播规则(适用任意二进制通用函数):  如果两个数组的维度数不相同,那么小维度数组的形状将会在最左边补1。...比较  比较运算通用函数适用任意形状、大小的数组。结果输出为布尔数组。 ...,内含3个重复值 # at()函数在这里对给定的操作,给定的索引,给定的值执行就地操作 # 类似方法:reduceat()函数 八、数组的排序  快速排序  # 算法复杂度O[NlogN] # 不修改原始数组的基础上返回一个排好序的数组

    1.3K30

    掌握这些Python的高级用法,让代码更可读、运行更高效!

    Web应用、桌面应用、游戏和运维脚本等多种多样的程序。...下面介绍几个Python的高级用法。 01 索引和切片 Python列表的索引和切片是非常强大的功能, 它们可以让你在Python中获取列表中的任意元素。...04 可变长参数列表 Python最通用的功能之一就是能够访问可变长度参数的列表。借助此功能,你的函数可以处理任意数量的参数,就像内置的print函数一样。...numpy的线性代数模块非常完备,以计算点积为例进行介绍。 使用numpy时,可以使用点积函数dot计算点积。...下面是描述点积应用到二维数组通用模式: (A, B) * (B, C) => (A, C) 思考下面的2×3数组,再结合一个3×2数组,其点积是2×2数组。

    78930

    掌握这些Python的高级用法,让代码更可读、运行更高效!

    大家好,我是辰哥(文末送书) Python是世界上最流行的编程语言(TIOBE Index for April 2022),它易于上手且多才多艺,除了用于神经网络的构建外, 还能用来创建Web应用、...下面介绍几个Python的高级用法。 01 索引和切片 Python列表的索引和切片是非常强大的功能, 它们可以让你在Python中获取列表中的任意元素。...04 可变长参数列表 Python最通用的功能之一就是能够访问可变长度参数的列表。借助此功能,你的函数可以处理任意数量的参数,就像内置的print函数一样。...numpy的线性代数模块非常完备,以计算点积为例进行介绍。 使用numpy时,可以使用点积函数dot计算点积。...下面是描述点积应用到二维数组通用模式: (A, B) * (B, C) => (A, C) 思考下面的2×3数组,再结合一个3×2数组,其点积是2×2数组。

    74830

    NumPy 笔记(超级全!收藏√)

    = False, ndmin = 0) 参数说明:  名称描述object数组或嵌套的数列dtype数组元素的数据类型,可选copy对象是否需要复制,可选order创建数组的样式,C为行方向,F为列方向...,A为任意方向(默认)subok默认返回一个与基类类型一致的数组ndmin指定生成数组的最小维度 ndarray 对象由计算机内存的连续一维部分组成,并结合索引模式,将每个元素映射到内存块中的一个位置。...hstack水平堆叠序列中的数组(列方向)vstack竖直堆叠序列中的数组(行方向) numpy.concatenate  numpy.concatenate 函数用于沿指定轴连接相同形状的两个或多个数组...这里举一个应用场景:小升初考试,重点班录取学生按照总成绩录取。...NumPy 字节交换  在几乎所有的机器上,多字节对象都被存储为连续的字节序列。字节顺序,是跨越多字节的程序对象的存储规则。

    4.6K30

    python:numpy详细教程

    在NumPy中,这些叫作“通用函数”(ufunc)。在NumPy里这些函数作用按数组的元素运算,产生一个数组作为输出。   ...广播第二法则确定长度为1的数组沿着特殊的方向表现地好像它有沿着那个方向最大形状的大小。对数组来说,沿着那个维度的数组元素的值理应相同。     应用广播法则之后,所有数组的大小必须匹配。...索引:比较矩阵和二维数组     注意NumPy中数组和矩阵有些重要的区别。NumPy提供了两个基本的对象:一个N维数组对象和一个通用函数对象。其它对象都是建构在它们之上的。...传统上我们用矩形的行和列表示一个二维数组或矩阵,其中沿着0轴的方向被穿过的称作行,沿着1轴的方向被穿过的是列。...参考写个Matlab用户的NumPy指南并且在这里添加你的新发现: )     直方图(histogram)     NumPy中histogram函数应用到一个数组返回一对变量:直方图数组和箱式向量。

    1.2K40

    NumPy的详细教程

    matplotlib将允许你绘图Scipy在NumPy的基础上提供了很多科学模块   基础篇   NumPy的主要对象是同种元素的多维数组。...在NumPy中,这些叫作“通用函数”(ufunc)。在NumPy里这些函数作用按数组的元素运算,产生一个数组作为输出。 ...广播第二法则确定长度为1的数组沿着特殊的方向表现地好像它有沿着那个方向最大形状的大小。对数组来说,沿着那个维度的数组元素的值理应相同。   应用广播法则之后,所有数组的大小必须匹配。...传统上我们用矩形的行和列表示一个二维数组或矩阵,其中沿着0轴的方向被穿过的称作行,沿着1轴的方向被穿过的是列。...参考写个Matlab用户的NumPy指南并且在这里添加你的新发现: )   直方图(histogram)   NumPy中histogram函数应用到一个数组返回一对变量:直方图数组和箱式向量。

    79400

    收藏 | Numpy详细教程

    在NumPy中,这些叫作“通用函数”(ufunc)。...广播第二法则确定长度为1的数组沿着特殊的方向表现地好像它有沿着那个方向最大形状的大小。对数组来说,沿着那个维度的数组元素的值理应相同。 应用广播法则之后,所有数组的大小必须匹配。...索引:比较矩阵和二维数组 注意NumPy中数组和矩阵有些重要的区别。NumPy提供了两个基本的对象:一个N维数组对象和一个通用函数对象。其它对象都是建构在它们之上 的。...传统上我们用矩形的行和列表示一个二维数组或矩阵,其中沿着0轴的方向被穿过的称作行,沿着1轴的方向被穿过的是列。...中histogram函数应用到一个数组返回一对变量:直方图数组和箱式向量。

    2.5K20

    一键获取新技能,玩转NumPy数据操作

    除了数据切片和数据切块的功能之外,掌握numpy也使得开发者在使用各数据处理库调试和处理复杂用例时更具优势。 ?...NumPy通过数组广播(broadcasting)知道这种操作需要和数组的每个元素相乘。 数组的切片操作 我们可以像python列表操作那样对NumPy数组进行索引和切片,如下图所示: ?...聚合函数 NumPy为我们带来的便利还有聚合函数,聚合函数可以将数据进行压缩,统计数组中的一些特征值: ?...除此之外,NumPy之美的一个关键之处是它能够将之前所看到的所有函数应用到任意维度上。 NumPy中的矩阵操作 创建矩阵 我们可以通过将二维列表传给Numpy来创建矩阵。...很多时候,改变维度只需在NumPy函数的参数中添加一个逗号,如下图所示: ? NumPy中的公式应用示例 NumPy的关键用例是实现适用于矩阵和向量的数学公式。这也Python中常用NumPy的原因。

    1.7K20

    一键获取新技能,玩转NumPy数据操作

    除了数据切片和数据切块的功能之外,掌握numpy也使得开发者在使用各数据处理库调试和处理复杂用例时更具优势。 ?...NumPy通过数组广播(broadcasting)知道这种操作需要和数组的每个元素相乘。 数组的切片操作 我们可以像python列表操作那样对NumPy数组进行索引和切片,如下图所示: ?...聚合函数 NumPy为我们带来的便利还有聚合函数,聚合函数可以将数据进行压缩,统计数组中的一些特征值: ?...除此之外,NumPy之美的一个关键之处是它能够将之前所看到的所有函数应用到任意维度上。 NumPy中的矩阵操作 创建矩阵 我们可以通过将二维列表传给Numpy来创建矩阵。...很多时候,改变维度只需在NumPy函数的参数中添加一个逗号,如下图所示: ? NumPy中的公式应用示例 NumPy的关键用例是实现适用于矩阵和向量的数学公式。这也Python中常用NumPy的原因。

    1.8K10

    python numpy 总结

    matplotlib将允许你绘图 Scipy在NumPy的基础上提供了很多科学模块    基础篇    NumPy的主要对象是同种元素的多维数组。...在NumPy中,这些叫作“通用函数”(ufunc)。在NumPy里这些函数作用按数组的元素运算,产生一个数组作为输出。   ...广播第二法则确定长度为1的数组沿着特殊的方向表现地好像它有沿着那个方向最大形状的大小。对数组来说,沿着那个维度的数组元素的值理应相同。    应用广播法则之后,所有数组的大小必须匹配。...传统上我们用矩形的行和列表示一个二维数组或矩阵,其中沿着0轴的方向被穿过的称作行,沿着1轴的方向被穿过的是列。...参考写个Matlab用户的NumPy指南并且在这里添加你的新发现: )    直方图(histogram)    NumPy中histogram函数应用到一个数组返回一对变量:直方图数组和箱式向量。

    80430

    快速上手Numpy模块

    我们从上面可以看出我们创建数组的时候,调用dtype的时候返回的都是float64,这是因为NumPy关注的是数值的计算,所以在NumPy中如果没有特别的指定,数据类型基本上都是float64(浮点数)...e Numpy数组索引 基本的索引和切片 NumPy数组的索引是一个内容丰富的主题,因为选取数据子集或者是单个元素的方式有很多。对于一维数组来说,他和Python中的list的功能差不太多。...数组的切片是原始数组的视图,也就是说数据没有被复制,视图上的任何修改都会直接反应到源数组上。...在一个二维数组中,各索引位置上的元素不再是标量而是一维数组。...▲二维数组的展示图 布尔型索引 布尔型索引是NumPy特有的功能,他的功能非常的强大。并且应用的场景也非常的多。比如:下表是几个学生的一年中期末期中的语数英三科的考试成绩: ?

    1.5K10

    NumPy使用图解教程「建议收藏」

    数组的算术运算 让我们创建两个NumPy数组,分别称作data和ones: 若要计算两个数组的加法,只需简单地敲入data + ones,就可以实现对应位置上的数据相加的操作(即每行数据进行相加)...数组的切片操作 我们可以像python列表操作那样对NumPy数组进行索引和切片,如下图所示: 聚合函数 NumPy为我们带来的便利还有聚合函数,聚合函数可以将数据进行压缩,统计数组中的一些特征值:...除此之外,NumPy之美的一个关键之处是它能够将之前所看到的所有函数应用到任意维度上。 NumPy中的矩阵操作 创建矩阵 我们可以通过将二维列表传给Numpy来创建矩阵。...可以将此操作图解为如下所示: 矩阵的切片和聚合 索引和切片功能在操作矩阵时变得更加有用。可以在不同维度上使用索引操作来对数据进行切片。...很多时候,改变维度只需在NumPy函数的参数中添加一个逗号,如下图所示: NumPy中的公式应用示例 NumPy的关键用例是实现适用于矩阵和向量的数学公式。这也Python中常用NumPy的原因。

    2.9K30

    一键获取新技能,玩转NumPy数据操作!

    除了数据切片和数据切块的功能之外,掌握numpy也使得开发者在使用各数据处理库调试和处理复杂用例时更具优势。 ?...NumPy通过数组广播(broadcasting)知道这种操作需要和数组的每个元素相乘。 数组的切片操作 我们可以像python列表操作那样对NumPy数组进行索引和切片,如下图所示: ?...聚合函数 NumPy为我们带来的便利还有聚合函数,聚合函数可以将数据进行压缩,统计数组中的一些特征值: ?...除此之外,NumPy之美的一个关键之处是它能够将之前所看到的所有函数应用到任意维度上。 NumPy中的矩阵操作 创建矩阵 我们可以通过将二维列表传给Numpy来创建矩阵。...很多时候,改变维度只需在NumPy函数的参数中添加一个逗号,如下图所示: ? NumPy中的公式应用示例 NumPy的关键用例是实现适用于矩阵和向量的数学公式。这也Python中常用NumPy的原因。

    1.5K30
    领券