首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    点云配准任务中的点特征与一般点特征的区别在哪里?

    这个工作来自于华中科技大学,发表于ICCV 2021。这个工作聚焦于点云的点特征表示学习,但是,与一般的点特征学习方法并不一样。我们知道,基于深度学习的三维点云处理已经在近年来得到了广发关注,从先驱性的工作例如PointNet到近期的Point Transformer等。这些工作都能有效的学习点特征表示。但是,这些方法学习点特征都是基于输入的某一个点云而言的,所有的操作也都集中在一个点云上,并且追求特征的描述性,力求能准确表示三维点云的局部几何结构。但是,这篇论文针对点云配准工作提出了另一种点云设计方式。我们知道配准的目的是求解输入的点云对之间的相对变换以使它们最好的对齐,在这个过程中,聚焦于用学到的点特征表示构造可靠的匹配对。为此,对于点特征的鲁棒性需求也很重要。为了实现这个目的,本工作提出从输入的两个点云出发,利用这两个点云之间的交互进一步调整点特征学习,使得到的点特征表示源于同时感知到当前点云和另一个需要配对的点云,从而追求正确的匹配点的可匹配性的提升。也就是说这是一个针对特定任务而设计的点特征学习方法,或许此方法学到的点特征难以应用到其他任务,例如分类、分割等,但对于匹配、配准而言应该更加适用。

    01
    领券