网络可被视为由两部分组成:编码器功能“h = f(x)”和产生重建“r = g(h)”的解码器。 ? 好的,知道你在想什么!只是另一篇没有正确解释的帖子?没有!那不是将如何进行的。...这将有助于更好地理解并帮助在将来为任何ML问题建立直觉。 ? 首先构建一个简单的自动编码器来压缩MNIST数据集。使用自动编码器,通过编码器传递输入数据,该编码器对输入进行压缩表示。...然后该表示通过解码器以重建输入数据。通常,编码器和解码器将使用神经网络构建,然后在示例数据上进行训练。 但这些编码器和解码器到底是什么? ?...那么,这个“压缩表示”实际上做了什么呢? 压缩表示通常包含有关输入图像的重要信息,可以将其用于去噪图像或其他类型的重建和转换!它可以以比存储原始数据更实用的方式存储和共享任何类型的数据。...此外,来自此数据集的图像已经标准化,使得值介于0和1之间。 由于图像在0和1之间归一化,我们需要在输出层上使用sigmoid激活来获得与此输入值范围匹配的值。
什么是Hudi Apache Hudi代表Hadoop Upserts anD Incrementals,管理大型分析数据集在HDFS上的存储。Hudi的主要目的是高效减少摄取过程中的数据延迟。...由Uber开发并开源,HDFS上的分析数据集通过两种类型的表提供服务:读优化表(Read Optimized Table)和近实时表(Near-Real-Time Table)。...它可以像任何作业一样进一步水平扩展,并将数据集直接存储在HDFS上。 Hudi的作用 上面还是比较抽象的话,接着我们来看下图,更形象的来了解Hudi ?...Hudi机制 存储机制 hudi维护了一个时间轴,记录了在不同时刻对数据集进行的所有操作。 hudi拥有2种存储优化。...但就分析类业务场景的实际性能而言,由于这类场景负载主要在读取上,像Parquet/ORC这样的混合列式存储格式轻松击败HBase。Hudi打破了数据快速入库和基于该数据进行分析业务之间的壁障。
在现实世界中开发机器学习(ML)模型的主要瓶颈之一是需要大量手动标记的训练数据。例如,Imagenet数据集由超过1400万手动标记的各种现实的图像组成。...弱监督使用标签模型创建的标签数据集来训练下游模型,下游模型的主要工作是在标签模型的输出之外进行泛化。如Snorkel论文所述,在数据集上实现弱监督有三个步骤。...由于LFS是程序化标签源,因此我们可以在整个未标记的语料库上运行步骤1和2,生成许多标签并在步骤3中训练的模型可以受益于步骤1和2中创建的更广泛的训练数据集。...1、初始化:使用从标签模型的弱标签来微调语言模型,例如在初始化步骤中使用交叉熵损失。然后将微调后的BERT模型在整个数据集上的概率预测作为软伪标签。...因此启发式LF选择被提出出来,该过程只使在一个小的手工标记验证集上具有最好的准确性的LF集合的LF子集。 启发式LF选择可以让我们开始时只使用少量的LFS,并随着时间的推移对他们进行增加和完善。
,我们创建了一个SmileCNN存储库的分支,修改了笔记本并将它们转换为python文件,以适应我们现有的使用MXNet模型服务器进行推断的用例,。...该数据集是近40MB的非笑脸和笑脸的实例。数据集有一个包含每个正面和反面训练图像的文件夹。此脚本获取这些图像并将其大小从64 x 64调整到32 x 32像素。...按照MMS快速入门指南,我们在我们的机器上设置MXNet模型服务器。...由于MXNet模型服务器对其进行舍入(round)时,模型的推断概率可能会出现偏差。 为了进一步评估模型,我们使用不同的示例对其进行测试。 ?...:)(我认为,需要面带微笑才能离开大楼比较现实) 了解更多 Keras-MXNet的最新版本使用户以更高的速度训练大型模型,并以MXNet原生格式导出经过训练的模型,允许在多个平台上进行推理,包括MXNet
图片ClickHouse的MergeTree引擎在大规模数据集上具有出色的性能。...数据预聚合:MergeTree引擎支持预计算聚合数据,这样可以避免在查询时进行大量的聚合操作,从而提高查询速度。...数据本地化:MergeTree引擎可以在存储节点上执行查询,避免了数据传输的开销,加快了查询速度。...总之,ClickHouse的MergeTree引擎在大规模数据集上的性能优化主要体现在索引结构、数据分区、数据压缩、数据预聚合、数据合并和数据本地化等方面,从而提高查询效率,实现快速的数据分析和查询。...在使用ClickHouse的MergeTree引擎时,如果遇到数据丢失或损坏的问题,可以采取以下解决方法:1. 检查数据源:首先,需要确保数据源(例如文件、数据库等)没有发生意外的数据丢失或损坏。
安装了 Titan RTX 测试台上的实验表明,在 ImageNet 和 COCO2017 这样相对较大的数据集上,TensorFlow 和 PyTorch 的训练速度可能比 MXNet 略快。...但在相对较小的图像上,MXNet 有最好的训练表现。...以下为所有的设置步骤和实验环境,我们将 CV 任务的结果细节呈现如下: 4.1 实验 1:在 CIFAR-10 数据集上进行 RESNET-50 推理、训练 设置: 实验:ResNet-50 推理 框架...这些发现告诉我们,即使是在同一台计算设备上,不同类型的任务或不同框架都可能导致性能差异,数据集、代码优化方法也有影响。 5. 在 NLP 任务上的结果 在这一部分,我们以单精度运行所有 NLP 任务。...RTX,这可能会节省我多卡配置的空间,减少多卡通信时间,让我在深度学习任务上相对轻松地训练一个相对大型的数据集。
你可以在 Keras 中进行设计,利用 Keras-MXNet 进行训练,并使用 MXNet 在生产中运行大规模推断。...支持 CNN 现在我们在 CIFAR-10 数据集上训练 ResNet 模型,来识别 10 个类别:飞机、汽车、鸟、猫、鹿、狗、青蛙、马、船和卡车。...按表中描述在 CPU、单个 GPU 和多 GPU 上使用不同的模型和数据集,你会发现 Keras-MXNet 训练 CNN 的速度更快,且在多个 GPU 上实现高效的性能提升。详见训练速度柱状图。...CIFAR10 数据集包含 5 万张图像,每张图像的大小是 32×32 像素。使用四个 GPU 传输这些小图像所需的通信开销比使用八个 GPU 的开销高。...ImageNet 和合成数据数据集更好地展示了 Keras-MXNet 可能带来的性能改进。详见下表。 ? 使用 Keras-MXNet 的图像处理速度对比 ?
Large mini-batch 分布式深度学习是满足需求的关键技术。但是由于难以在不影响准确性的情况下在大型集群上实现高可扩展性,因此具有较大的挑战难度。...表1:ImageNet上训练ResNet-50的记录 增加 mini-batch 大小,实现短时间内的高准确性 基于大数据集的深度神经网络 (DNN) 模型在对象检测、语言翻译等领域取得了令人瞩目的成果...然而,随着 DNN 模型和数据集规模的增大,DNN 训练的计算量也随之加剧。 具有数据并行性的分布式深度学习是加速集群训练的一种有效方法。...为了克服这些问题,我们采用了以下两种优化方法。 1) 调整通信的数据大小 2) 通信的优化调度 实验设置与实验结果 我们使用 ABCI 集群来评估基于 MXNet 的优化框架的性能。...如图表明,直到 2048 个 GPU,我们的框架的可扩展性都非常好。使用 2048 个 GPU 的吞吐量为每秒 170 万张图像,可扩展性为 77.0%。
但是由于难以在不影响准确性的情况下在大型集群上实现高可扩展性,因此具有较大的挑战难度。...表1:ImageNet上训练ResNet-50的记录 增加 mini-batch 大小,实现短时间内的高准确性 基于大数据集的深度神经网络 (DNN) 模型在对象检测、语言翻译等领域取得了令人瞩目的成果...然而,随着 DNN 模型和数据集规模的增大,DNN 训练的计算量也随之加剧。 具有数据并行性的分布式深度学习是加速集群训练的一种有效方法。...如图表明,直到 2048 个 GPU,我们的框架的可扩展性都非常好。使用 2048 个 GPU 的吞吐量为每秒 170 万张图像,可扩展性为 77.0%。...因此,ImageNet 数据集一个 epoch 的图像数量为 1,280,000 张,如果使用 81,920 mini-batch,一个 epoch 中的更新数量仅为 16 张,其中更新总数为 1,440
但是由于难以在不影响准确性的情况下在大型集群上实现高可扩展性,因此具有较大的挑战难度。 最近,富士通实验室的一项研究刷新了一项纪录: ?...表1:ImageNet上训练ResNet-50的记录 增加 mini-batch 大小,实现短时间内的高准确性 基于大数据集的深度神经网络 (DNN) 模型在对象检测、语言翻译等领域取得了令人瞩目的成果...然而,随着 DNN 模型和数据集规模的增大,DNN 训练的计算量也随之加剧。 具有数据并行性的分布式深度学习是加速集群训练的一种有效方法。...在图 2 中,虚线表示理想的每秒图像吞吐量,实线表示我们的结果。如图表明,直到 2048 个 GPU,我们的框架的可扩展性都非常好。...因此,ImageNet 数据集一个 epoch 的图像数量为 1,280,000 张,如果使用 81,920 mini-batch,一个 epoch 中的更新数量仅为 16 张,其中更新总数为 1,440
上面的gif图展示的是LFFD人脸检测算法,在Nvidia GPU上对1080P的图像可以跑到16ms左右。 该算法出自论文: ?...请看LFFD与其他state-of-the-art算法的精度比较。 在WIDER FACE 验证集上的精度比较: ? 在WIDER FACE 测试集上的精度比较: ?...在FDDB 数据集上的精度比较: ? 虽然精度并不是最高水平的,但其模型大小仅9M,推断速度更是其亮点。...在NVIDIA GTX TITAN Xp (MXNet+CUDA 9.0+CUDNN7.1)配置下的推断速度: ?...在NVIDIA TX2 (MXNet+CUDA 9.0+CUDNN7.1)配置下的推断速度: ? 在树莓派 3 Model B+ (ncnn) 配置下的推断速度: ?
对于精确并且昂贵的激光点云数据来说当前的3D检测算法具有很高的检测精度。...然而到目前为止,使用廉价的单目相机或者立体相机数据的检测算法仍然很难达到较高的精度,出现这种差距的主要原因是基于图像数据算法在深度估计上存在较大的误差。...然而,在这篇论文中,认为造成这种差异的主要原因不是数据的质量,而是数据的表现形式。考虑到卷积神经网络的内部工作原理,建议将基于图像的深度映射转换为伪像素表示——本质上是模拟激光雷达信号。...经过在当前广泛应用的Kitti数据机上进行测试,本文算法有效的改进了当前最好的基于图像的3D目标检测算法,并且在30m的检测范围内,检测精度从过去的22%,提升到74%。...算法提交时本文算法在kitti的基于立体图像的3D目标检测排行榜排名第一。 下面是论文具体框架结构以及实验结果: ? ? ? ? ? ? ? ?
大数据文摘出品 编译:林安安、蒋宝尚 74.7秒! 根据日本富士通实验室最新研究。他们应用了一种优化方法,在ABCI 集群上,实现了74.7秒的训练时间。...使用大规模mini batch的分布式深度学习是解决这个需求的关键技术,但很难准确地在大型集群上实现很高的可扩展性。...在大型数据集上训练的深度神经网络(DNN)模型在各领域(如物体检测,语言翻译等)都取得了令人瞩目的成果。然而,随着DNN模型和数据集的增多,DNN训练的计算成本也增加了。...众所周知,具有数据并行性的分布式深度学习能快速进行群集训练。此方法中,在群集上进行的所有进程都具有相同的DNN模型和权重。...因此,他们使用几种方法来增加mini-batch的大小,这代表在迭代中计算的输入图像的数量,而且不会影响验证准确性。
下载和解压数据集 在这个示例中,我们将使用玩具数据集,我们称之为示例数据集,它包含10个不同类别的总共10k个图像(分类问题),实际上是CIFAR10数据集转换为png(图像转换将在评估过程中自动完成)...(可选)你可以确定输入的形状(实际上不使用,Caffe启动器使用网络提供的信息)和数据排布方式,以防你的模型使用非标准数据排布方式进行训练(对于Caffe,默认布局为NCHW)。...您可以在《模型优化器开发人员指南》中找到支持参数的完整列表。 模型将在每次评估之前进行转换。...如果要使用批处理进行推断,请提供所需批处理的模型或使用mo_params中的特定参数进行转换。...(可选)你可以确定输入的形状(实际上不使用,Caffe启动器使用网络提供的信息)和数据排布方式,以防你的模型使用非标准数据排布方式进行训练(对于Caffe,默认布局为NCHW)。
评价指标 特点 准确率 目前,大部分研究工作均会测量Top-1准确率,只有在ImageNet这类大型数据集上才会只用Top-5准确率,为方便比较 参数压缩率 统计网络中所有可训练的参数,根据机器浮点精度转换为字节...大型网络通常是在量级较大的数据集上训练完成的,比如,在ImageNet上训练的模型具备对1000类物体的分类,但在一些具体场景的应用中,可能仅需要一个能识别其中几类的小型模型。...目前,对各类深度网络压缩算法的评价是比较零碎的,侧重于和被压缩的大型网络在参数量和运行时间上的比较。...17.5.2 TensorRT加速原理 https://blog.csdn.net/xh_hit/article/details/79769599 在计算资源并不丰富的嵌入式设备上,TensorRT之所以能加速神经网络的推断主要得益于两点...另一部分则采用其他框架实现,如MXnet 或 PyTorch; 17.5.4 TensorRT加速效果如何 以下是在TitanX(Pascal)平台上,TensorRT对大型分类网络的优化加速效果:
如下展示了这三种模型在 Pascal VOC 数据集中的预训练效果,其中 Pascal VOC 包含 20 种类别的图像: ?...以下展示了三种语义分割模型在 ADE20K 数据集的效果,其中 ADE20K 为 MIT 发布的场景解析数据集,该数据集包含多种情景,包括人物、背景和物体等。 ?...GluonCV-Torch 使用 在该项目中,张航展示了一个简单的使用示例,其调用了在 ADE20K 数据集上预训练的 DeepLabV3 语义分割模型。...机器之心在 PyTorch 0.4.1 的环境下可以安装 GluonCV-Torch,并成功运行,我们在 CPU 上推断一张图片的时间约为 70 多秒,在 GPU(K80)上的推断时间为 10 多秒。...如果我们要推断其它的图像或使用其它预训练模型,可以直接修改 load_image 的图像路径和 gluoncvth.models 就可以了。
例如 2018 年 8 月,fast.ai 学员在 18 分钟内成功完成训练 ImageNet 的任务,准确率达到 93%(128 块 V100 GPU);腾讯在 ImageNet 数据集上以 64K...在大规模数据集上训练的深度神经网络(DNN)在目标检测、语言翻译等多个领域取得了令人印象深刻的结果。但是,随着 DNN 模型和数据集规模不断增加,DNN 训练的计算成本也随之增长。...众所周知,数据并行的分布式深度学习在集群上执行训练,是一种有效的加速方法。在这种方法中,集群上启动的所有进程具有相同的 DNN 模型和权重。...框架优化 研究人员使用以 C++ 和 CUDA C 语言写就的开源深度学习框架 MXNet,该框架提供多种语言绑定。MXNet 具有灵活性和可扩展性,能够高效地在集群上训练模型。...如果我们计算 GPU 上每层的权重范数,就会发现线程的数量不足以占据所有 CUDA 内核。因此,研究人员实现了一个特殊的 GPU 内核,以在 MXNet 中批量进行范数计算。
仅用一块GPU卡的话,FCN上Caffe、CNTK和Torch比MXNet和TensorFlow表现更好;CNN上MXNet表现出色,尤其是在大型网络时;而Caffe和CNTK在小型CNN上同样表现不俗...另一方面,由于数据并行化可能影响收敛速度,该评测还在多GPU卡的情况下比较了收敛速度。 评测使用合成数据集和真实数据集。合成数据集主要用于评估运行时间,真实数据集用于测量收敛速度。...表1:用于评测的深度学习软件 神经网络和数据集:对于合成数据的测试,实验采用具有约5500万个参数的大型神经网络(FCN-S)来评估FCN的性能。...对于真实数据的测试,为MNIST数据集构建的FCN(FCN-R)较小;针对Cifar10数据集则使用名为AlexNet-R和ResNet-56的AlexNet架构。...在这类网络上,MXNet也表现出良好的可扩展性,因为它是在GPU上进行梯度聚合,这不仅减少了经常传输梯度数据的PCI-e时间,并能利用GPU资源来进行并行计算。
近日,苹果在GitHub上发布了Turi Create框架。苹果表示,这个框架旨在通过简化机器学习模型的开发,降低开发者构建模型的门槛。...易于使用:让你聚焦于任务而不是算法 可视化:内置的流式可视化功能可以探索你的数据 灵活:支持文本,图像,音频,视频和传感器数据 快速和可扩展性:可在单台机器上处理大型数据集 易于准备配置:模型导出到Core...pip install virtualenv 安装Turi Create的方法参照标准的python包安装步骤。...下一步是卸载mxnet并安装启用CUDA的mxnet-cu80包: (venv) pip uninstall-y mxnet (venv) pip install mxnet-cu80==0.11.0...如果你在设置GPU时遇到困难,可参阅MXNet安装说明。 从源代码构建 如果你想从源代码构建Turi Create,请参阅BUILD.md。 提交贡献 请参阅CONTRIBUTING.md。
领取专属 10元无门槛券
手把手带您无忧上云