如果收集标记的数据,则可以通过监督学习来解决所有这些二元问题。 ? 还可以设计更复杂的监督学习系统来解决非二进制分类任务: 多类分类:有两个以上的类,每个观测值都属于一个并且只有一个类。...它以所有电子测量,错误,症状,行驶里程为输入,并预测万一发生汽车事故时需要更换的零件。 多标签分类在计算机视觉应用中也很常见。...这些迭代器对于图像目录包含每个类的一个子目录的多类分类非常方便。但是,在多标签分类的情况下,不可能拥有符合该结构的图像目录,因为一个观察可以同时属于多个类别。...如果它们在多标签分类任务中具有相同的重要性,则对所有标签取平均值是非常合理的。在此根据TensorFlow中的大量观察结果提供此指标的实现。...这是用于构成模型的TF.Hub模块。 总结 多标签分类:当一个观察的可能标签数目大于一个时,应该依靠多重逻辑回归来解决许多独立的二元分类问题。使用神经网络的优势在于,可以在同一模型中同时解决许多问题。
由于本项目既有涉及multi-class(多类分类),也有涉及multi-label(多标记分类)的部分,multi-class分类网上已经很多相关的文章了。...之后如果有时间的时候,再说一说cross validation(交叉验证)和在epoch的callback函数中处理一些多标签度量metric的问题。...其实关于多标签学习的研究,已经有很多成果了。 主要解法是 * 不扩展基础分类器的本来算法,只通过转换原始问题来解决多标签问题。如BR, LP等。 * 扩展基础分类器的本来算法来适配多标签问题。...,原因主要是多标签分类的目标是将每个输出的标签作为一个独立的伯努利分布,并且希望单独惩罚每一个输出节点。...小结 本文介绍了如何采用 Keras 实现多标签图像分类,主要的两个关键点: 输出层采用 sigmoid 激活函数,而非 softmax 激活函数; 损失函数采用 binary cross-entropy
[深度概念]·多标签分类与多分类的通俗理解 想到了一个很恰当比方 其实类似与多选题与单选题的问题 多分类(单选题)就是选出最大正确概率的选项 多标签(多选题)需要判断每个选项是否正确 也不难理解多分类需要用...softmax激活使得每个选项转化为概率 而多标签分类使用singmod转化为多个二分类问题 多标签的难点也类似于多选题对于单选题的难度
在某些领域,甚至它们在快速准确地识别图像方面超越了人类的智能。 在本文中,我们将演示最流行的计算机视觉应用之一-多类图像分类问题,使用fastAI库和TPU作为硬件加速器。...「本文涉及的主题」: 多类图像分类 常用的图像分类模型 使用TPU并在PyTorch中实现 多类图像分类 我们使用图像分类来识别图像中的对象,并且可以用于检测品牌logo、对对象进行分类等。...这些是流行的图像分类网络,并被用作许多最先进的目标检测和分割算法的主干。...在下面的代码片段中,我们可以得到输出张量及其所属的类。 learn.predict(test) ? 正如我们在上面的输出中看到的,模型已经预测了输入图像的类标签,它属于“flower”类别。...结论 在上面的演示中,我们使用带TPU的fastAI库和预训练VGG-19模型实现了一个多类的图像分类。在这项任务中,我们在对验证数据集进行分类时获得了0.99的准确率。
,即一个样本只对应一个标签,但实际上多标签在实际应用中也非常常见,例如个人爱好的集合一共有6个元素:运动、旅游、读书、工作、睡觉、美食,一般情况下,一个人的爱好有这其中的一个或多个,这就是典型的多标签分类任务...y^k相当于一个onehot向量中多了一些1,例如[0,1,0,1],表示该样本同时是第1类和第3类 这种朴素的BCE非常容易收到标签不平衡的影响,因为头部样本比较多,可能所有头部样本的损失总和为100...下面,我们介绍三种替代方法解决多标签文本分类中长尾数据的类别不均衡问题。...这些平衡方法主要思想是重新加权BCE,使罕见的样本-标签对得到合理的"关注" Focal Loss (FL) 通过在BCE上乘一个可调整的聚焦参数\gamma \ge 0,Focal Loss将更高的损失权重放在...{1}{n_i}来加权,但是在多标签的情况下,如果采用同样的策略,一个具有多标签的样本会被过度采样,概率是P^I = \frac{1}{c}\sum_{y_i^k=1}\frac{1}{n_i}。
---- 本节知识视频教程 一、多继承 类似于c++中某个类,一次可以继承多个父类,所有被继承的这些父类的方法和属性都将可以被子类使用。...注意:如果所继承的父类的方法相同的情况下,那么按照从左到右的方向,依次由写在左边的类的方法覆盖右边类的方法。...可以通过子类的__bases__ (注意这里有两个下划线) 2.Python中属性的继承规则呢? 通过测试,我们知道属性的继承规则和方法的继承规则是一样的。...三、总结强调 1.掌握多继承类的定义 2.掌握查看多继承类的魔法属性 3.掌握多继承类的调用规则 4.掌握属性的继承规则 相关文章: python应用场景有哪些?岗位工资如何?...入手一门编程语言,一起初识Python html中的起到什么作用?前端面试经常考到 python中类和对象 python中函数递归VS循环
[知乎作答]·关于在Keras中多标签分类器训练准确率问题 本文来自知乎问题 关于在CNN中文本预测sigmoid分类器训练准确率的问题?中笔者的作答,来作为Keras中多标签分类器的使用解析教程。...在CNN中,sigmoid分类器训练、测试的准确率的判断标准是预测准确其中一个标签即为预测准确还是怎样。如何使sigmoid分类器的准确率的判断标准为全部预测准确即为预测准确。有什么解决方案?...二、问题回复 问题中提出的解决多标签多分类问题的解决方法是正确的。但是要注意几点,keras里面使用这种方式的acc是二进制acc,会把多标签当做单标签计算。 什么意思呢?...解决方法如下:重写acc评价指标,笔者自己写了一个多标签分类的acc,一个样本里,只有全部标签都对应上才acc为1,有一个不对就为0。 ?...设置合适的权重值,val_acc上升了,val多标签acc也达到了更高。 关于如何设置合适权重,笔者还在实验中,可以关注下笔者的知乎和博客。后面实验结果会及时更新。
近期在复现论文过程中发现,使用增强数据集进行多标签分类时,某些图片缺少对应的标记,需要对照原始Pascal VOC2012数据集的标注方法,重新获取各类物体的标注信息,并完成多标签分类任务以及相应的指标评价...现将相关细节和部分代码进行解读,以帮助大家理解多标签分类的流程和相关注意事项。...txt文件 本次实战是关于图片多标签分类任务的介绍,因此主要关注的为Annotation文件夹和ImageSets下的Main文件夹。...在多标签分类任务中,我们可以构建一个1x20的矩阵作为图片的标签,其中对应的类别若存在,则置1,反之则置0。...总结 以上就是整个多标签图像分类实战的过程,由于时间限制,本次实战并没有进行详细的调参工作,因此准确率还有一定的提升空间。
https://blog.csdn.net/oBrightLamp/article/details/84069835 摘要 本文求解 softmax + cross-entropy 在反向传播中的梯度...相关 配套代码, 请参考文章 : Python和PyTorch对比实现多标签softmax + cross-entropy交叉熵损失及反向传播 有关 softmax 的详细介绍, 请参考 : softmax...函数详解及反向传播中的梯度求导 有关 cross-entropy 的详细介绍, 请参考 : 通过案例详解cross-entropy交叉熵损失函数 系列文章索引 : https://blog.csdn.net.../oBrightLamp/article/details/85067981 正文 在大多数教程中, softmax 和 cross-entropy 总是一起出现, 求梯度的时候也是一起考虑....标量 e ), 求 e 关于 x 的梯度.
接着上一次的多标签分类综述,本文主要以Pascal VOC2012增强数据集进行多标签图像分类训练,详细介绍增强数据集制作、训练以及指标计算过程,并通过代码进行详细阐述,希望能为大家提供一定的帮助!...作者&编辑 | 郭冰洋 上一期多标签图像分类文章,也是本文的基础,点击可以阅读:【技术综述】多标签图像分类综述 1 简介 基于image-level的弱监督图像语义分割大多数以传统分类网络作为基础,从分类网络中提取物体的位置信息...近期在复现论文过程中发现,使用增强数据集进行多标签分类时,某些图片缺少对应的标记,需要对照原始Pascal VOC2012数据集的标注方法,重新获取各类物体的标注信息,并完成多标签分类任务以及相应的指标评价...现将相关细节和部分代码进行解读,以帮助大家理解多标签分类的流程和相关注意事项。...在多标签分类任务中,我们可以构建一个1x20的矩阵作为图片的标签,其中对应的类别若存在,则置1,反之则置0。
1.概念介绍 多标签图像分类(Multi-label Image Classification)任务中图片的标签不止一个,因此评价不能用普通单标签图像分类的标准,即mean accuracy,该任务采用的是和信息检索中类似的方法...上图比较直观,圆圈内(true positives + false positives)是我们选出的元素,它对应于分类任务中我们取出的结果,比如对测试样本在训练好的car模型上分类,我们想得到top...那么,这个例子中Precision=2/5=40%,意思是对于car这一类别,我们选定了5个样本,其中正确的有2个,即准确率为40%;Recall=2/6=30%,意思是在所有测试样本中,共有6个car...实际多类别分类任务中,我们通常不满足只通过top-5来衡量一个模型的好坏,而是需要知道从top-1到top-N(N是所有测试样本个数,本文中为20)对应的precision和recall。...显然随着我们选定的样本越来也多,recall一定会越来越高,而precision整体上会呈下降趋势。
基于Caffe VGG16 的多标签分类 这里采用从图像直接读取图片数据和标签的方式进行多标签分类. 1....image_multilabel_data_layer.hpp 添加 cpp 实现文件,如 src/caffe/layers/image_multilabel_data_layer.cpp 添加 Layer 对应的类及其类涉及参数...(); // train.txt中的每行记录了每个图片名称及其labels....基于VGG16多标签分类 3.1 train_val.prototxt name: "vgg16-multilabel" layer { name: "data" type: "ImageMultilabelData...3.5 多标签分类部署 deploy.py #!
模型选择 本人相关文章: 逻辑斯谛回归模型( Logistic Regression,LR) 基于sklearn的LogisticRegression二分类实践 sklearn多类和多标签算法: Multiclass...classification 多类分类 意味着一个分类任务需要对多于两个类的数据进行分类。...比如,对一系列的橘子,苹果或者梨的图片进行分类。多类分类假设每一个样本有且仅有一个标签:一个水果可以被归类为苹果,也可以是梨,但不能同时被归类为两类。...固有的多类分类器: sklearn.linear_model.LogisticRegression (setting multi_class=”multinomial”) 1对多的多类分类器:...是 O(n2)的复杂度 在以sepal的长宽为特征的预测中,2维分类线可见setosa与剩余2类线性可分,剩余两类之间线性不可分 在以petal的长宽为特征的预测相比于sepal的两个特征预测,petal
书写自动智慧:探索Python文本分类器的开发与应用:支持二分类、多分类、多标签分类、多层级分类和Kmeans聚类 文本分类器,提供多种文本分类和聚类算法,支持句子和文档级的文本分类任务,支持二分类...、多分类、多标签分类、多层级分类和Kmeans聚类,开箱即用。...分类可以分为多分类和多标签分类。...多分类的标签是排他的,而多标签分类的所有标签是不排他的。...多标签分类比较直观的理解是,一个样本可以同时拥有几个类别标签, 比如一首歌的标签可以是流行、轻快,一部电影的标签可以是动作、喜剧、搞笑等,这都是多标签分类的情况。
假设正在解决新闻文章数据集的文档分类问题。 输入每个单词,单词以某种方式彼此关联。 当看到文章中的所有单词时,就会在文章结尾进行预测。...在新闻文章示例的文件分类中,具有这种多对一的关系。输入是单词序列,输出是单个类或标签。 现在,将使用TensorFlow 2.0和Keras使用LSTM解决BBC新闻文档分类问题。...在标记化文章中,将使用5,000个最常用的词。oov_token当遇到看不见的单词时,要赋予特殊的值。这意味着要用于不在中的单词word_index。...print(set(labels)) 总共有5个标签,但是由于没有对标签进行单一编码,因此必须将其sparse_categorical_crossentropy用作损失函数,似乎认为0也是可能的标签,而令牌化程序对象则以整数...如果希望最后一个密集层为5,则需要从训练和验证标签中减去1。决定保留原样。 决定训练10个时期,正如将看到的,这是很多时期。
https://blog.csdn.net/oBrightLamp/article/details/84069835 正文 在大多数教程中, softmax 和 cross-entropy 总是一起出现..., 求梯度的时候也是一起考虑....softmax 和 cross-entropy 的梯度, 已经在上面的两篇文章中分别给出. 1 题目 考虑一个输入向量 x, 经 softmax 函数归一化处理后得到向量 s 作为预测的概率分布,...已知向量 y 为真实的概率分布, 由 cross-entropy 函数计算得出误差值 error (标量 e ), 求 e 关于 x 的梯度. ?
而本期Meetup上,白刚的分享主要围绕着新浪门户的大规模多标签分类算法工作(项目已上传到GitHub )。 背景 在类似新浪的媒体中,广告带来收益,同时也会影响到用户体验。...Multi-Label Classification 基于上述思考,新的目标被确定:首先,模型本身的输出就是多标签结果,而不是组合多个二分类的模型去获得最终结果;其次,训练过程是最小化Hamming loss...,这样一个目标可以让多标签的分类更准;最后,必须是可扩展的,不管是在Feature的维度上,还是在Label的维度上,亦或是数据集的大小上,都能适应一个很大的规模。...分享期间,白刚详细的介绍了上述3点工作原理及学习机制,并针对Spark上的实现进行了详细讲解,其中包括: 多标签情况下弱分类器的系数的计算及其数学意义。...通过参考2014年的文献,主要分享了这三个方面的多标签弱分类算法: Decision stump:一个只有一个节点的决策树,只有两个模型参数。
p=8640 介绍 在本文中,我们将看到如何开发具有多个输出的文本分类模型。我们将开发一个文本分类模型,该模型可分析文本注释并预测与该注释关联的多个标签。多标签分类问题实际上是多个输出模型的子集。...输出: 您可以看到,“有毒”评论的出现频率最高,其次分别是 “侮辱”。 创建多标签文本分类模型 创建多标签分类模型的方法有两种:使用单个密集输出层和多个密集输出层。...具有单输出层的多标签文本分类模型 在本节中,我们将创建具有单个输出层的多标签文本分类模型。 在下一步中,我们将创建输入和输出集。输入是来自该comment_text列的注释。 ...具有多个输出层的多标签文本分类模型 在本节中,我们将创建一个多标签文本分类模型,其中每个输出标签将具有一个 输出密集层。...结论 多标签文本分类是最常见的文本分类问题之一。在本文中,我们研究了两种用于多标签文本分类的深度学习方法。在第一种方法中,我们使用具有多个神经元的单个密集输出层,其中每个神经元代表一个标签。
对于简单的多标签分类任务来讲,GCN将图的特征矩阵经过多个图卷积层后得到每个节点的状态向量表示,然后再经过一个softmax函数来进行分类,最后再最小化softmax输出与真实标签的交叉熵损失。...如果我们简单地堆叠更多的层,该模型将混合来自不同标签的节点的特性,使它们难以区分。 具有sigmoid层的多标签分类模型不能捕获标签关系,因为它单独处理每个标签。...因此,它可能会丢失关于多标签图数据集的一些信息。 为了解决上述问题,本文提出了一个新的基于GCN的多标签节点分类模型ML-GCN。 2....2.2 ML-GCN思想 ML-GCN与GCN最大的不同在于其引入了一个标签嵌入矩阵 图片 ,即将每一个类的标签都表示为一个长度为 图片 的向量。...将三个损失进行加权,然后利用Adam优化加权损失。 3. 实验 数据集: 实验结果: 其中,Partly ML-GCN为只计算node-label损失的ML-GCN。
领取专属 10元无门槛券
手把手带您无忧上云