多线程调试的主要任务是准确及时地捕捉被调试程序线程状态的变化的事件,并且GDB针对根据捕捉到的事件做出相应的操作,其实最终的结果就是维护一根叫thread list的链表。上面的调试命令都是基于thread list链表来实现的,后面会有讲到。
廖威雄,目前就职于珠海全志科技股份有限公司从事linux嵌入式系统(Tina Linux)的开发,主要负责文件系统和存储的开发和维护,兼顾linux测试系统的设计和持续集成的维护。
很多时候,我们为了提升接口的性能,会把之前单线程同步执行的代码,改成多线程异步执行。
进程与线程之间是有区别的,不过linux内核只提供了轻量进程的支持,未实现线程模型。Linux是一种“多进程单线程”的操作系统。Linux本身只有进程的概念,而其所谓的“线程”本质上在内核里仍然是进程。
多线程编程已经成为了现代软件开发的重要组成部分。对于Linux操作系统而言,多线程的支持和实现更是被广泛应用。本文将通过详细解析Linux操作系统中的多线程概念、线程的创建与管理、同步与互斥、线程间通信等方面,并结合示例代码,来深入探讨Linux的多线程编程。
这是一篇介绍Linux调度问题的文章,源自这篇文章。文章中涉及到的一些问题可能已经得到解决,但可以学习一下本文所表达的思想和对CPU调度的理解。
在Linux中,线程是由进程来实现,线程就是轻量级进程( lightweight process ),因此在Linux中,线程的调度是按照进程的调度方式来进行调度的,也就是说线程是调度单元。Linux这样实现的线程的好处的之一是:线程调度直接使用进程调度就可以了,没必要再搞一个进程内的线程调度器。在Linux中,调度器是基于线程的调度策略(scheduling policy)和静态调度优先级(static scheduling priority)来决定那个线程来运行。
一切互斥操作的依赖是 自旋锁(spin_lock),互斥量(semaphore)等其他需要队列的实现均需要自选锁保证临界区互斥访问。
看了 《Android 的离奇陷阱 — 设置线程优先级导致的微信卡顿惨案》这篇文章,有没有觉得原来大家再熟悉不过的线程,也还有鲜为人知的坑?除此之外,微信与线程之间还有很多不得不说的故事,下面跟大家分享一下线程还会导致什么样的内存问题。 [anon:thread stack guard page] 在分析虚拟内存空间耗尽导致的 crash 问题时,我们在 /proc/[pid]/maps 中发现了新增了不少跟以往不一样 case,内存中充满了大量这样的块: 从 map entry 的名字与内存大小和权
前面已经讲过了雪花算法,里面使用了System.currentTimeMillis()获取时间,有一种说法是认为System.currentTimeMillis()慢,是因为每次调用都会去跟系统打一次交道,在高并发情况下,大量并发的系统调用容易会影响性能(对它的调用甚至比new一个普通对象都要耗时,毕竟new产生的对象只是在Java内存中的堆中)。我们可以看到它调用的是native 方法:
在Linux系统中,进程间的同步和通信是一个复杂而关键的话题。为了维护系统资源的正确访问和分配,Linux提供了多种同步机制,其中锁机制是其中之一。然而,当多个进程试图同时访问同一资源时,可能会出现死锁或竞争条件。为了有效地诊断和解决这些问题,Linux提供了lslocks命令,该命令可以显示系统上的活动锁信息,帮助系统管理员和开发者深入了解系统资源的使用情况。
在做性能测试中不断思考java应用,性能怎么观察,怎么通过方法定位到代码,是否有通用步骤,通过查找资料与参考前人的知识总结,才有如下文章,话说知道不等于会,会不等于能运用,只有不断有意识的去练习才能掌握。总之,这属于基础技能,有了这层基础,再去使用高级版的工具(如阿里的Arthas),也就顺风顺水,水到渠成。
现如今,一个服务端应用程序几乎都会使用到多线程来提升服务性能,而目前服务端还是以linux系统为主。一个多线程的java应用,不管使用了什么样的同步机制,最终都要用JVM执行同步处理,而JVM本身也是linux上的一个进程,那么java应用的线程同步机制,可以说是对操作系统层面的同步机制的上层封装。这里我说的操作系统,主要是的非实时抢占式内核(non-PREEMPT_RT),并不讨论实时抢占式内核(PREEMPT_RT) 的问题,二者由于使用场景不同,因此同步机制也会存在差异或出现变化。
注:pthread_exit或者return返回的指针所指向的内存单元必须是全局的或者是用malloc分配的,不能在线程函数的栈上分配,因为当其它线程得到这个返回指针时线程函数已经退出了
前面已经讲过了雪花算法 ,里面使用了System.currentTimeMillis()获取时间,有一种说法是认为System.currentTimeMillis()慢,是因为每次调用都会去跟系统打一次交道,在高并发情况下,大量并发的系统调用容易会影响性能(对它的调用甚至比new一个普通对象都要耗时,毕竟new产生的对象只是在Java内存中的堆中)。我们可以看到它调用的是native 方法:
大家应该都知道,python有一个GIL(全局解释器锁),用于控制多线程的并发行为。 注:GIL不是必须的,可以通过对每个资源单独加锁的方式去掉GIL,也就是将GIL换成更细粒度的锁。
基本概念 物理CPU:物理CPU就是插在主机上的真实的CPU硬件,在Linux下可以数不同的physical id 来确认主机的物理CPU个数。 核心数:物理CPU下一层概念就是核心数,我们常常会听说多核处理器,其中的核指的就是核心数。在Linux下可以通过cores来确认主机的物理CPU的核心数。 逻辑CPU:核心数下一层的概念是逻辑CPU,逻辑CPU跟超线程技术有联系,假如物理CPU不支持超线程的,那么逻辑CPU的数量等于核心数的数量;如果物理CPU支持超线程,那么逻辑CPU的数目是核心数数目的两倍。在Linux下可以通过 processors 的数目来确认逻辑CPU的数量。 超线程:超线程是英特尔开发出来的一项技术,使得单个处理器可以象两个逻辑处理器那样运行,这样单个处理器以并行执行线程。这里的单个处理器也可以理解为CPU的一个核心;这样便可以理解为什么开启了超线程技术后,逻辑CPU的数目是核心数的两倍了。 在Linxu下查看物理cpu、核心数、逻辑CPU和是否支持超线程 关于CPU的一些信息可在 /proc/cpuinfo 这个文件中查看,这个文件显示的内容类似于下图所示
超线程技术(Hyper-Threading): 就是利用特殊的硬件指令,把两个逻辑内核(CPU core)模拟成两个物理芯片,(一个核模拟出两个核?)
🌊2.1 std::async(异步执行) 到 future get 直接调用会如何抛异常
背景:今天被人问到一个10G的超大CSV如何最快速度读取,并插入到数据库中。一般读取文件都是单线程一直往下读,但是如果文件特别大的情况下就会很慢。如何快速读取?脑海里面"多线程"一下子就浮出水面了,想要快速读取文件,肯定得多线程一起读取。那问题来了,一个文件怎么样进行多线程读取,首先得知道每个线程要负责读取的位置,才可以多线程完整的读取一行的数据。
今天,我们不聊操作系统层面对栈的管理,只从应用程序的角度,来看一下如何实时获取栈的使用情况。
早在LINUX2.2内核中。并不存在真正意义上的线程,当时Linux中常用的线程pthread实际上是通过进程来模拟的,也就是同过fork来创建“轻”进程,并且这种轻进程的线程也有个数的限制:最多只能有4096和此类线程同时运行。 2.4内核消除了个数上的限制,并且允许在系统运行中动态的调整进程数的上限,当时采用的是Linux Thread 线程库,它对应的线程模型是“一对一”,而线程的管理是在内核为的函数库中实现,这种线程得到了广泛的应用。但是它不与POSIX兼容。另外还有许多诸如信号处理,进程ID等方面的问题没有完全解决。 相似新的2.6内核中,进程调度通过重新的编写,删除了以前版本中的效率不高的算法,内核框架页也被重新编写。开始使用NPTL(Native POSIX Thread Library)线程库,这个线程库有以下几个目标: POSIX兼容,都处理结果和应用,底启动开销,低链接开销,与Linux Thread应用的二进制兼容,软硬件的可扩展能力,与C++集成等。 这一切是2.6的内核多线程机制更加完备。
各位好,今天是我们并发篇正式开始的第一篇,既然我们大家学习并发,那么就要理解一些计算机概念最好,否则,知道怎么用而不知道名称是啥,概念含糊不清,以及不知道怎么设计的,假如今天你突然换 go 语言,设计个并发还是不会。我们要学的是并发思想,在Java 中的思想,一通则百通,而不是背代码,切记切记。
所谓惊群现象,简单的来说就是当多个进程或线程在同时阻塞等待同一个事件时,如果该事件发生,会唤醒在等待的所有的进程/线程,但最终只可能有一个进程/线程对该事件进行处理,其他进程/线程会在失败后重新休眠,唤醒多个进程/线程这种不必要的行为会造成系统资源的浪费(涉及到进程的上下文切换)。而常见的惊群问题有accept惊群、epoll惊群。
今天我们就来爬爬这个网站 https://tu.enterdesk.com/ 这个网站能爬的资源还是很多的,但我就写一个例子,其他的可以根据思路去写。
workerman使用pcntl_fork()来实现master/worker的多进程模型,每个worker进程通过使用stream_socket_server()函数来创建socket,由于fork创建的worker进程具备亲缘关系,所以不同的worker进程可以对相同的端口监听;不同worker进程监听相同的socket,在该socket存在事件时,所有监听该socket的worker进程会被唤醒,所有worker进程对socket资源进行抢占式处理,但最终只有一个worker进程可以对socket进行accept;在这个过程中就存在n-1个worker进程是无效调度的,仅仅只是被唤起了然后抢占失败并再次入眠。
性能测试中当我们尝试使用 Linux 命令(如 nproc 或 lscpu )了解服务器CPU架构和性能参数时,我们经常发现我们无法正确解释其结果,因为我们混淆CPU、物理核、逻辑核概念等术语。
从Linux 2.6.23开始,默认的调度器为CFS,即"完全公平调度器"(Completely Fair Scheduler)。CFS调度器取代了之前的"O(1)"调度器。
如果代码中获取时间使用的System.currentTimeMillis();,这样在单线程的情况下完全没问题,但是如果是多线程比如说后端提供的数据服务,那么就会出现严重的性能问题,导致服务不可用。
近日,火绒安全团队截获蠕虫病毒“MinerGuard”新变种,严重威胁企业用户。该病毒通过网络服务器漏洞以及暴力破解服务器的方式迅速传播,并且可跨平台(Windows、linux)交叉感染。病毒入侵电脑后,会释放挖矿病毒挖取门罗币。此外,病毒作者可随时通过远程服务器更新病毒模块,甚至利用以太坊(区块链平台)钱包更新病毒服务器地址。
Java里面的IO模型种类较多,主要包括BIO,NIO和AIO,每个IO模型都有不一样的地方,那么这些IO模型是如何演变呢,底层的原理又是怎样的呢? 本文我们就来聊聊。
写在前面:今天开始尝试写写除Vim外的其他内容,仍然是以技术为主,可能涉及的内容包括Linux、正则表达式、gdb、makefile等内容,不知道小伙伴们有没有兴趣看呢?不管如何,也算是我自己的知识沉淀吧~
中 , 实现了 获取线程调度策略 , 获取指定调度策略的最大和最小优先级 , 获取线程优先级 , 设置线程调度策略 等功能 ;
除了原子操作,中断屏蔽,自旋锁以及自旋锁的衍生锁之外,在Linux内核中还存在着一些其他同步互斥的手段。
在过去的开发工作中,大家都是通过创建进程或者线程来工作的。Linux进程是如何创建出来的? 、聊聊Linux中线程和进程的联系与区别! 和你的新进程是如何被内核调度执行到的? 这几篇文章就是帮大家深入理解进程线程原理的。
1)头文件 windows下winsock.h/winsock2.h linux下sys/socket.h 错误处理:errno.h 2)初始化 windows下需要用WSAStartup WSADATA wsaData; err = WSAStartup(0x202,&wsaData); if ( err != 0 ) { return 0; } else if ( LOBYTE( wsaData.wVersion )
作为资源管理的核心部分,OS的线程调度器必须保持下面这样简单,不变的特性: 确保ready状态的线程总是被调度到有效的CPU核上。虽然它看起来是简单的,我们发现这个不变性在Linux上经常被打破。当ready状态的线程在runqueue中等待时,有些CPU核却还会空闲几秒。以我们的经验,这类性能方面的问题会导致重度依赖同步的应用的性能成倍的下降,针对Kernel编译会多造成高达13%的延迟,针对广泛使用的商用数据库会造成23%的吞吐量降低。传统的测试技术和调试工具对于确认和了解这类问题是无效的,因此这些问题的症状经常是难以捕获的。为了能够推动我们的调查,我们构建了新的工具来在线检测这种违反不变性的情况并且将调度行为可视化。这些工具是简单的,易于在多个kernel版本间移植的并且使用的代价很小。我们相信这些工具将成为内核开发者工具链的一部分来帮助其避免这类问题的出现。
众所周知,硬实时的概念,其核心并非追求速度的极致,而是确保系统能在预定的、可重复的时间范围内给予确定的响应。这意味着,实时系统的正确性不仅在于计算逻辑的正确,更在于结果的产生时间是否符合预期。以汽车为例,当发生碰撞时,安全气囊必须在极短的时间内弹开,否则可能无法起到应有的保护作用。
与线程有关的函数构成了一个完整的系列,大多数函数名都是以“pthread_”为开头的,要使用这些函数需要引入头文件pthread.h。链接这些线程函数库需要使用编译器命令的-lpthread选项。
go 源代码首先要通过 go build 编译为可执行文件,在 linux 平台上为 ELF 格式的可执行文件,编译阶段会经过编译器、汇编器、链接器三个过程最终生成可执行文件。
笔者一直觉得如果能知道从应用到框架再到操作系统的每一处代码,是一件Exciting的事情。 今天笔者就从Linux源码的角度看下Server端的Socket在进行Accept的时候到底做了哪些事情(基于Linux 3.10内核)。
本文是《Go语言调度器源代码情景分析》系列的第19篇,也是第四章《Goroutine被动调度》的第2小节。
操作系统中的经典定义: 进程:资源分配单位。 线程:调度单位。 操作系统中用PCB(Process Control Block, 进程控制块)来描述进程。Linux中的PCB是task_struct结构体。
之前有一章节介绍了Handler的常见面试题,今天就来说说另类的,可能你没关注的其他问题,一起看看吧。
在计算机科学和软件工程中,多线程编程是一项关键技能,尤其在当今多核处理器和高并发应用程序的背景下显得尤为重要。本文将全面探讨Linux环境下的线程编程,涵盖基本概念、线程创建与管理、线程同步、性能优化以及实际应用,通过详细的C++示例代码帮助读者深入理解并掌握这一技术。
首先简述下Signal Catcher,Signal Catcher线程接受到kernel系统底层的消息进行dump当前虚拟机的信息并且设置每个线程的标志位(check_point)和请求线程状态为挂起,当线程运行过程中进行上下文切换时会检查该标记。等到线程都挂起后,开始遍历Dump每个线程的堆栈和线程数据后再唤醒线程。关于ANR的更多内容在我的其他博客中进行查阅~~.
进程:一个JVM就是一个进程 线程:最小的调度单元 一个进程可以包含多个线程,在安卓中有一个主线程也就是UI线程,UI线程才可以操作界面,如果在一个线程里面进行大量耗时操作在安卓中就会出现ANR(Application Not Responding)
在搭建好编译环境并下载好源码后,即可对源码进行编译,编译打包好后,即可将打包好的固件烧写到设备中去。本文主要介绍编译和烧写的方法。
领取专属 10元无门槛券
手把手带您无忧上云