首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

keras搭建基于自动编码器的异常检测技术进行欺诈识别

我最近阅读了一篇名为《使用自动编码器进行异常检测》的文章,在该文中对所生成的数据进行了实验,并且我认为将使用自动编码器进行异常检测这一想法应用于真实世界当中的欺诈检测中,似乎是一个不错的主意。 ?...此时,我们将构建一个自动编码器,它具有3层编码器和2层解码器,具体如下: ? 自动编码器将我们的数据编码到一个子空间,并且在对数据进行归一化时将其解码为相应的特征。...我们希望自动编码器能够学习到在归一化转换时的特征,并且在应用时这个输入和输出是类似的。而对于异常情况,由于它是欺诈数据,所以输入和输出将会明显不同。...接下来,让我们下载数据并训练自动编码器: df = pd.read_csv('creditcard.csv') x = df[df.columns[1:30]].to_numpy() y =

1K10
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    keras系列︱人脸表情分类与识别:opencv人脸检测+Keras情绪分类(四)

    但是表情识别很难,因为人脸的微表情很多,本节介绍一种比较粗线条的表情分类与识别的办法。...Keras系列: Keras系列: 1、keras系列︱Sequential与Model模型、keras基本结构功能(一) 2、keras系列︱Application中五款已训练模型、VGG16框架(...Sequential式、Model式)解读(二) 3、keras系列︱图像多分类训练与利用bottleneck features进行微调(三) 4、keras系列︱人脸表情分类与识别:opencv...人脸检测+Keras情绪分类(四) 5、keras系列︱迁移学习:利用InceptionV3进行fine-tuning及预测、完整案例(五) 本次讲述的表情分类是识别的分析流程分为: 1、加载pre-model...是利用Keras实现的。

    4.2K100

    自动编码器

    学习目标 目标 了解自动编码器作用 说明自动编码器的结构 应用 使用自动编码器对Mnist手写数字进行数据降噪处理 5.2.1 自动编码器什么用 自编码器的应用主要有两个方面 数据去噪...进行可视化而降维 自编码器可以学习到比PCA等技术更好的数据投影 5.2.1 什么是自动编码器(Autoencoder) 5.2.1.1 定义 自动编码器是一种数据的压缩算法,一种使用神经网络学习数据值编码的无监督方式...5.2.1.3 类别 普通自编码器 编解码网络使用全连接层 多层自编码器 卷积自编码器 编解码器使用卷积结构 正则化自编码器 降噪自编码器 5.2.2 Keras快速搭建普通自编码器...训练自编码器 获取数据 模型输入输出训练 显示自编码前后效果对比 5.2.2.3 代码编写 导入所需包 from keras.layers import Input, Dense from keras.models...掌握正则化自动编码器结构作用

    80520

    Keras文本分类实战(上)

    其它应用比如,检测垃圾邮件、自动标记客户查询以及将文本分类为已定义的主题等。那么,如何做到这一点呢? 选择数据集 在开始之前,首先看看手上有什么数据。...下面将使用[逻辑回归]()分类模型,这是一种常用的分类模型。从数学上讲,实际上是基于输入特征向量0到1之间的回归。通过指定阈值(默认为0.5),将回归模型用于分类。...接下来,我们将了解神经网络相关内容以及如何将它们应用于文本分类。...此外,随着深度学习方法的兴起,相应的开源工具箱也有很多,比如Tensorflow、Keras、Theano或Caffe等,本文使用keras构建相应的神经网络模型。...有关keras的安装和配置可以查阅相关的教程安装,这里不做过多的介绍。下面构建你的第一个Keras模型。

    99530

    Keras文本分类实战(下)

    在上一节Keras文本分类实战(上),讲述了关于NLP的基本知识。这部分,将学会以不同方式将单词表示为向量。...使用这种表示,可以看到分类整数值表示数组的位置,1表示出现,0表示不出现。这种编码常用于分类之中,这些类别可以是例如城市、部门或其他类别。...使用Keras可以在顺序模型中添加各类池化层: from keras.models import Sequentialfrom keras import layersembedding_dim = 50model...结论 本文讲述如何使用Keras进行文本分类,从一个使用逻辑回归的词袋模型变成了越来越先进的卷积神经网络方法。本文没有涉及的另一个重要主题是循环神经网络RNN,更具体地说是LSTM和GRU。...当了解上述内容后,就可以将其用于各种文本分类中,例如:电子邮件中的垃圾邮件检测、自动标记文本或使用预定义主题对新闻文章进行分类等,快动手尝试吧。

    1.2K30

    自动编码器

    自动编码器 前言的故事其实就是类比自动编码器 (autoencoder),D.Coder 音译为 encoder,即编码器,做的事情就是将图片转成坐标,而 N.Coder 音译为 decoder,即解码器...故事归故事,让我们看看自动编码器的严谨描述,它本质上就是一个神经网络,包含: 一个编码器 (encoder):用来把高维数据压缩成低维表征向量。...在 AutoEncoder 类里面定义 _build() 函数,构建编码器和解码器并将两者相连,代码框架如下 (后三小节会逐个分析): 接下两小节我们来一一剖析自动编码器中的编码模型和解码模型。...---- 总结 自动编码器只需要特征不需要标签,是一种无监督学习的模型,用于重建数据。...这个自编码器框架是好的,那么我们应该如何解决这三个缺陷能生成一个强大的自动编码器。这个就是下篇的内容,变分自动编码器 (Variational AutoEncoder, VAE)。

    25641

    条件变分自动编码器CVAE:基本原理简介和keras实现

    变分自动编码器(VAE)是一种有方向的图形生成模型,已经取得了很好的效果,是目前生成模型的最先进方法之一。...像任何其他自动编码器架构一样,它有一个编码器和一个解码器。编码器部分试图学习qφ(z | x),相当于学习数据的隐藏表示x或者x编码到隐藏的(概率编码器)表示。...期望是关于编码器的分布在表示通过采取一些样本。这个术语鼓励解码器在使用来自潜在分布的样本时学会重构数据。较大的错误表示解码器无法重构数据。...一种训练时变分自编码器实现为前馈神经网络,其中P(X|z)为高斯分布。红色表示不可微的采样操作。蓝色表示损失计算 ? 测试时变分的“自动编码器”,它允许我们生成新的样本。“编码器”路径被简单地丢弃。...CVAE的一个keras实现:https://github.com/nnormandin/ConditionalVAE/blob/master/ConditionalVAE.ipynb

    5.2K10

    Keras 系列 (三) Seq-Seq 与自编码器

    最近铁柱一直在思考一个问题 , 如何在Keras中实现RNN序列到序列(sequence-to-sequence)的预测?...在涉及到seq-seq的任务中,一般都会涉及到自编码器。...什么是自编码器 首先,自编码器(autoencoder) 是一种利用反向传播算法使得输出值等于输入值的神经网络(图二、图三),它先将输入压缩成潜在空间表征,然后通过这种表征来重构输出,输出是对输入的更加有效的表示...该网络可以看作由两部分组成:一个编码器函数和一个生成重构的解码器。传统上,自动编码器被用于降维或特征学习(来自Siraj Rava小哥的 自编码视频截图)。 ?...定义解码器 from keras.models import Sequential from keras import layers from keras.utils import plot_model

    1.5K10

    用Keras LSTM构建编码器-解码器模型

    我们将模型分成两部分,首先,我们有一个编码器,输入西班牙语句子并产生一个隐向量。...编码器是用一个嵌入层将单词转换成一个向量然后用一个循环神经网络(RNN)来计算隐藏状态,这里我们将使用长短期记忆(LSTM)层。 然后编码器的输出将被用作解码器的输入。..., Dense, Activation, RepeatVector, Embedding from keras.optimizers import Adam from keras.losses import...附录:不使用重复向量的编解码器 在本教程中,我们了解了如何使用RepeatVector层构建编码器-解码器。...实现这个模型的代码可以在Keras文档中找到,它需要对Keras库有更深入的理解,并且开发要复杂得多:https://blog.keras.io/a-ten-minute-introduction-to-sequence-to-sequence-learning-in-keras.html

    1.9K20

    【Keras速成】Keras图像分类从模型自定义到测试

    这一次我们讲讲keras这个简单、流行的深度学习框架,一个图像分类任务从训练到测试出结果的全流程。...03Keras 自定义数据 3.1 MNIST实例 MNIST手写字符分类被认为是深度学习框架里的“Hello Word!”,下面简单介绍一下MNIST数据集案例的测试。...此处采用keras的processing模块里的ImageDataGenerator类定义一个图像分类任务的dataset生成器: train_data_dir = '../../../.....本教程的例子采用一个简单的三层卷积,以及两层全连接和一个分类层组成的网络模型。...07总结 以上内容涵盖了采用keras进行分类任务的全部流程,从数据导入、模型搭建、模型训练、测试,模型保存和导入几个方面分别进行了介绍。

    1.1K10

    基于Keras的多标签图像分类

    本篇记录一下自己项目中用到的keras相关的部分。...由于本项目既有涉及multi-class(多类分类),也有涉及multi-label(多标记分类)的部分,multi-class分类网上已经很多相关的文章了。...multi-class 和 multi-label的区别 multi-class是相对于binary二分类来说的,意思是需要分类的东西不止有两个类别,可能是3个类别取一个(如iris分类),或者是10个类别取一个...import ImageDataGenerator from keras.optimizers import Adam from keras.preprocessing.image import img_to_array...小结 本文介绍了如何采用 Keras 实现多标签图像分类,主要的两个关键点: 输出层采用 sigmoid 激活函数,而非 softmax 激活函数; 损失函数采用 binary cross-entropy

    1.8K30

    keras实战项目——CIFAR-10 图像分类

    第一讲中提到过,深度学习是脱胎于传统机器学习的,两者之间的区别,就是深度学习可以在图像处理中,自动进行特征工程,如我们第一讲所言: 想让计算机帮忙挖掘、标注这些更多的特征,这就离不开 更优化的模型 了。...如果是进行百万张图片的分类,每个图片都有数以百万计的特征,我们将拿到一个 百万样本 x 百万特征 的巨型矩阵。传统的机器学习方法拿到这个矩阵时,受限于计算机内存大小的限制,通常是无从下手的。...也就是说,传统机器学习方法,除了在多数情况下不会自动产生这么多的特征以外,模型的训练也会是一个大问题。...Keras 里,可以直接使用 SGD, Adagrad, Adadelta, RMSProp 以及 Adam 等模块。...实战项目——CIFAR-10 图像分类 最后我们用一个keras 中的示例, 本文源码地址: 关注微信公众号datayx 然后回复“图像分类”即可获取。 首先做一些前期准备: ?

    74410

    自动编码器及其变种

    自动编码器   三层网络结构:输入层,编码层(隐藏层),解码层。   ...自动编码器属于神经网络家族,但它们与PCA(主成分分析)紧密相关。尽管自动编码器与PCA很相似,但自动编码器比PCA灵活得多。...从不同的角度思考特征具有何种属性是好的特征,自动编码器分为四种类型: (1)去燥自动编码器(DAE)(降噪) (2)稀疏自动编码器(SAE,Sparse Autoencoder)(稀疏性,即高而稀疏的表达...) (3)变分自动编码器(VAE)(高斯分布) (4)收缩自动编码器(CAE/contractive autoencoder)(对抗扰动) 去燥自编码器(DAE)   最基本的一种自动编码器,它会随机地部分采用受损的输入...如果需要多层的编码器,通过逐层训练的形式完成,这就是堆叠自动编码器。如果直接用多层的自动编码器,其本质就是在做深度学习的训练,可能会由于梯度爆炸或梯度消失导致难以训练的问题。

    85910

    TextCNN文本分类(keras实现)「建议收藏」

    文本分类是自然语言处理领域最活跃的研究方向之一,目前文本分类在工业界的应用场景非常普遍,从新闻的分类、商品评论信息的情感分类到微博信息打标签辅助推荐系统,了解文本分类技术是NLP初学者比较好的切入点,较简单且应用场景高频...'model.h5') TextCNN文本分类(keras实现)源代码及数据集资源下载: 项目实战-TextCNN文本分类(keras实现)源代码及数据集.zip-自然语言处理文档类资源-CSDN下载...参考学习资料: (1)Keras之文本分类实现 (2)使用Keras进行深度学习 (3)NLP论文 (4)卷积神经网络(CNN)在句子建模上的应用 (5)用深度学习(CNN RNN Attention)...解决大规模文本分类问题 – 综述和实践 (6)深度学习在文本分类中的应用 (7)深度学习与文本分类总结第一篇–常用模型总结 (8)基于 word2vec 和 CNN 的文本分类 :综述 & 实践 本人博文...-电影评论情感判别 2、项目实战-中文文本分类-商品评论情感判别 3、项目实战-XGBoost与LightGBM文本分类 4、项目实战-TextCNN文本分类实战 5、项目实战-Bert文本分类实战 6

    1.6K30
    领券