首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

使用Keras的Python深度学习模型的学习率方案

在这篇文章中,你将了解如何使用Keras深度学习库在Python中使用不同的学习率方案。 你会知道: 如何配置和评估time-based学习率方案。 如何配置和评估drop-based学习率方案。...训练模型的学习率计划 调节随机梯度下降优化程序的学习率可以提高性能并减少训练时间。 这可能被称为学习率退火或学习率自适应。...这里我们将这种方法称为学习率方案,它默认使用不变的学习率为每个训练周期更新网络权重。 在训练过程中,最简单也是最常用的学习率适应是随时间减小学习率的技术。...两个流行和易于使用的学习率方案如下: 根据周期逐步降低学习率。 在特定周期,标记骤降学习率。 接下来,我们将介绍如何根据Keras使用这些学习率方案。...Time-Based学习率方案 Keras有内置的基于时间的学习率方案。随机梯度下降优化算法通过SGD类的一个称为衰变的参数实现。

2.8K50

Keras学习笔记——Hello Keras

最近几年,随着AlphaGo的崛起,深度学习开始出现在各个领域,比如无人车、图像识别、物体检测、推荐系统、语音识别、聊天问答等等。...因此具备深度学习的知识并能应用实践,已经成为很多开发者包括博主本人的下一个目标了。 目前最流行的框架莫过于Tensorflow了,但是只要接触过它的人,就知道它使用起来是多么让人恐惧。...Tensorflow对我们来说,仿佛是一门高深的Deep Learning学习语言,需要具备很深的机器学习和深度学习功底,才能玩得转。...Keras正是在这种背景下应运而生的,它是一个对开发者很友好的框架,底层可以基于TensorFlow和Theano,使用起来仿佛是在搭积木。.../xinghalo/keras-examples/blob/master/keras-cn/mnist/mnist_mlp.py 很多人hello world跑不通是因为网络问题,不能下载到对应的数据集

66300
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    图像超分:真实感图像超分辨率的局部判别学习方法

    A Locally Discriminative Learning Approach to Realistic Image Super-Resolution》 一、基本信息 研究背景:单图像超分辨率(...SISR)问题,它旨在从低分辨率(LR)图像重建高分辨率(HR)图像。...最近,由于其生成丰富细节的潜力,使用生成对抗网络(GAN)的SISR引起了越来越多的关注。然而,GAN的训练不稳定,它经常在生成的细节中引入许多感知上不愉快的伪影。...,但是也会产生很多视觉伪影 研究方法:作者提出了一种简单而有效的局部判别学习(LDL)方法,它可以轻松地插入现成的SISR方法并提升它们的性能。...3、结论 本文分析了基于GAN的SISR方法产生视觉伪影的原因,提出了一种局部判别学习方法(LDL)策略来解决这个问题。

    32810

    探索学习率设置技巧以提高Keras中模型性能 | 炼丹技巧

    学习率选取是一项具有挑战性的工作,学习率设置的非常小可能导致训练过程过长甚至训练进程被卡住,而设置的非常大可能会导致过快学习到次优的权重集合或者训练过程不稳定。...因此,我们不想改变这些层的权重,而是更大程度上修改更深层的权重从而适应目标任务/数据。 “差分学习率”是指在网络的不同部分使用不同的学习率,初始层的学习率较低,后几层的学习率逐渐提高。 ?...使用差分学习率的CNN样例 在Keras中实现差分学习率 为了在Keras中实现差异学习,我们需要修改优化器源代码。...修改参数lr以应用学习率表 - 应用3个学习率表(因为差分学习结构中分为3个不同的阶段) 在更新每层的学习率时,初始代码遍历所有层并为其分配学习速率。...每个周期需要两倍于上一个周期大小 在Keras中实现SGDR 使用Keras Callbacks回调函数,我们可以实现以遵循特定公式的方式更新学习率。

    2.6K20

    tensorflow学习(keras)

    keras是什么? keras是一个可用于快速构建和训练深度学习模型的API。...通常是构建序列模型,也就是一个全连接的多层感知机: 代码如下:其中使用layers.Dense()函数设置每一层的相关配置,具体内容可参考官网 #实例化模型为model=tf.keras.Sequential...方法配置该模型的学习流程: optimizer:此对象会指定训练过程。...损失函数由名称或通过从 tf.keras.losses 模块传递可调用对象来指定。 metrics:用于监控训练。它们是 tf.keras.metrics 模块中的字符串名称或可调用对象。...序列模型中,由于序列模型无法表达任意的模型,所以可以构建高阶模型来构建自己想要的模型,以下示例使用函数式 API 构建一个简单的全连接网络,构造构成其实和序列化的过程差不多: #构造数据

    60340

    Keras迁移学习

    迁移学习 简单来说迁移学习是把在ImageNet等大型数据集上训练好的CNN模型拿过来,经过简单的调整应用到自己的项目上去。 ?...迁移学习的分类 迁移学习分为三种: 第一种叫transfer learning。用于图像分类的卷积神经网络由两部分组成:从一系列卷积层和池化层开始,并以全连接的分类器结束。...首先通过transfer learning对新的数据集进行训练,训练过一定epoch之后,改用fine tune方法继续训练,同时降低学习率。...fine-tune应该在很低的学习率下进行。...Reference 使用Inception V3模型进行迁移学习 基于InceptionV3模型的迁移学习应用 Keras Demo 在小数据集上迁移学习(上) 在小数据集上迁移学习(下) CS231N

    1.1K11

    使用Keras进行深度学习:(一)Keras 入门

    导语 Keras是Python中以CNTK、Tensorflow或者Theano为计算后台的一个深度学习建模环境。...相对于其他深度学习的框架,如Tensorflow、Theano、Caffe等,Keras在实际应用中有一些显著的优点,其中最主要的优点就是Keras已经高度模块化了,支持现有的常见模型(CNN、RNN等...Keras中设定了两类深度学习的模型,一类是序列模型(Sequential类);另一类是通用模型(Model 类)。下面我们通过搭建下图模型进行讲解。 ?...,其他层定义输出维度就可以搭建起模型,通俗易懂,方便高效,这是Keras的一个显著的优势。...图 5:优化和训练实现 最后用以下图片总结keras的模块,下一篇文章我们将会使用keras来进行项目实践,从而更好的体会Keras的魅力。 ?

    1.1K60

    DIMP:学习判别预测模型的跟踪算法

    此外,我们的方法能够学习判别损失本身的关键方面。我们的跟踪器在6个跟踪基准上设置了最新技术,在VOT2018上EAO得分0.440,运行40FPS。 1.简介 目前孪生网络学习框架仍受到严重限制。...在我们的设计中,我们从判别性学习(Discriminative Learning Loss)过程中汲取了灵感。我们的方法基于目标模型预测网络,该网络是通过应用迭代优化过程从判别性学习损失中得出的。...此外,我们通过学习判别损失本身,将极大的灵活性引入了最终的架构。 我们的整个判别式跟踪体系结构,以及主干特征提取器,都通过标注注释的跟踪序列来进行训练,方法是将未来帧的预测误差降至最低。...3.2 Optimization-Based Architecture 基于优化的架构 作者表示使用固定的学习率不仅会导致模型迭代次数多,获得的精度也不够理想,所以作者自己设计了一个梯度下降的方式,自适应的学到学习率...在这里,我们描述了如何学习残差函数(2)中的自由参数,这些参数定义了判别损失(1)。

    2.2K42

    深度判别和共享特征学习的图像分类

    在图像表示中,为了编码类的相关性和类的具体信息,文章提出了一个深度判别和可共享的特征学习一个新局部特征的学习方法。该方法旨在分层学习特征变换滤波器组,将原始像素图像块变换为特征。...所以提出了在已存在的类别组中编码可共享信息,且判别模式在特征学习过程中拥有具体类。 于是建立一个多层特征学习框架:深度判别和共享的特征学习。...大多数都采用无监督方法去学习滤波器为了特征提取,但是该文章坚信判别信息才是分类的关键,并且判别的模式可以被学习用于图像表示; ConvNets主要集中在逐步学习多层视觉模式,该文章的新框架主要集中在编码共享和判别的不同类的相关性到每一层的特征变换...判别训练 新框架专注于判别的学习滤波器,其将局部图像块变换为特征,并允许共享不同类之间的局部特征变换滤波器。所提出的样本选择方法可以得到更多提供信息的局部块层次的训练数据对于特征学习模块。...||ac||0项是用来强制稀疏,所以只有少数W的行被激活。 算法1:深度判别和共享特征学习 ? 判别信息编码项 为了增强特征的判别力,进一步引入一个假设项,就是判别特征应该更接近相同类的特征。

    1.1K70

    深度判别和共享特征学习的图像分类

    在图像表示中,为了编码类的相关性和类的具体信息,文章提出了一个深度判别和可共享的特征学习一个新局部特征的学习方法。该方法旨在分层学习特征变换滤波器组,将原始像素图像块变换为特征。...所以提出了在已存在的类别组中编码可共享信息,且判别模式在特征学习过程中拥有具体类。 于是建立一个多层特征学习框架:深度判别和共享的特征学习。...大多数都采用无监督方法去学习滤波器为了特征提取,但是该文章坚信判别信息才是分类的关键,并且判别的模式可以被学习用于图像表示; ConvNets主要集中在逐步学习多层视觉模式,该文章的新框架主要集中在编码共享和判别的不同类的相关性到每一层的特征变换...判别训练 新框架专注于判别的学习滤波器,其将局部图像块变换为特征,并允许共享不同类之间的局部特征变换滤波器。所提出的样本选择方法可以得到更多提供信息的局部块层次的训练数据对于特征学习模块。...||ac||0项是用来强制稀疏,所以只有少数W的行被激活。 算法1:深度判别和共享特征学习 ? 判别信息编码项 为了增强特征的判别力,进一步引入一个假设项,就是判别特征应该更接近相同类的特征。

    53830

    Keras 学习笔记(二)什么是Keras?为什么要使用Keras?

    为什么选择 Keras? 在如今无数深度学习框架中,为什么要使用 Keras 而非其他?以下是 Keras 与现有替代品的一些比较。...Keras 遵循减少认知困难的最佳实践: 它提供一致且简单的 API,它将常见用例所需的用户操作数量降至最低,并且在用户错误时提供清晰和可操作的反馈。 这使 Keras 易于学习和使用。...它尤其受以深度学习作为产品核心的创业公司的欢迎。 Keras也是深度学习研究人员的最爱,在上载到预印本服务器 arXiv.org 的科学论文中被提及的次数位居第二。...Keras 支持多个后端引擎,不会将你锁定到一个生态系统中 你的 Keras 模型可以基于不同的深度学习后端开发。...Keras 的发展得到深度学习生态系统中的关键公司的支持 Keras 的开发主要由谷歌支持,Keras API 以 tf.keras 的形式包装在 TensorFlow 中。

    1.6K20

    Keras学习(一)—— Keras 模型(keras.model): Sequential 顺序模型 和 Model 模型

    Keras Model模型 Keras 中文文档 Keras 模型 Sequential 顺序模型 Sequential使用方法 一个简单的Sequential示例 构建方法 input shape 输入的形状...Keras的一个很好的途径就是通过 文档 Keras 中文文档地址: https://keras.io/zh/models/about-keras-models/ 可以通过查看官方文档更加准确地了解相关信息...Keras 模型 Keras提供的模型,其中分为两类: Sequential 顺序模型 Model 类模型 我们可以通过 from keras.models import Sequential 或者 from...指定输入形状## model = Sequential() model.add(Dense(32, input_dim=784)) complication 编译 在训练模型之前,您需要配置学习过程,...Model 模型 ---- 参考Keras文档:https://keras.io/models/model/ ---- Model 模型是带有函数API的,不是线性的,它是一个可以多输入、多输出的模型。

    1.6K30

    Deep learning基于theano的keras学习笔记(0)-keras常用的代码

    保存Keras模型 这里不推荐使用pickle或cPickle来保存Keras模型。 1....一般使用model.save(filepath)将Keras模型和权重保存在一个HDF5文件中,该文件将包含: 模型的结构,以便重构该模型 模型的权重 训练配置(损失函数,优化器等) 优化器的状态,以便于从上次训练中断的地方开始...使用keras.models.load_model(filepath)来重新实例化你的模型,如果文件中存储了训练配置的话,该函数还会同时完成模型的编译,例子如下: from keras.models...我们可以建立一个Keras的函数来将获得给定输入时特定层的输出: from keras import backend as K #将后端的名字设为K # with a Sequential model...每个epoch后记录训练/测试的loss和正确率 model.fit在运行结束后返回一个History对象,其中含有的history属性包含了训练过程中损失函数的值以及其他度量指标。

    90010

    判别特征学习方法用于人脸识别

    为了增强深度学习特征的判别力,提出一种新的监督信号,称为中心损失,用于人脸识别任务。中心损失同时学习每一类深度特征的中心,并惩罚深度特征和它们相对应类别中心之间的距离。...本文提出一个新的损失函数,称为中心损失,有效地增强了深度学习特征的判别力。它学习每类深度特征的一个中心,在训练过程中,同时更新中心和最小化深度特征和相对应类别中心的距离。...第一,本文基于mini-batch更新中心,在每次迭代中,通过平均相对应类别的特征去计算中心,这样有些中心就不必更新;第二,为了避免一些贴错标签样本的扰动,本文使用了一个标量a去控制中心的学习率。...本文的中心损失不需要复杂的重组样本。因此,学习本文的CNNs是更有效和易于实施。此外,本文损失函数的目标更直接的去学习类内紧凑的目标,这是非常有益于判别性特征学习。 n 实验 ---- ?...---- 表1 LFW和YTF数据集上的结果 ? ---- 表2 不同方法的识别率在MegaFace数据集 ? ---- n 总结 本文提出一种新的损失函数,称为中心损失。

    74850

    评估Keras深度学习模型的性能

    Keras是Python中一个的强大而易用的库,主要用于深度学习。在设计和配置你的深度学习模型时,需要做很多决策。大多数决定必须通过反复试错的方法来解决,并在真实的数据上进行评估。...因此,有一个可靠的方法来评估神经网络和深度学习模型的性能至关重要。 在这篇文章中,你将学到使用Keras评估模型性能的几种方法。 让我们开始吧。 ?...因此,通常使用简单的数据分离将数据分成训练和测试数据集或者训练和验证数据集。 Keras提供了两种方便的方式来评估你的深入学习算法: 1.使用自动验证数据集。 2.使用手动验证数据集。...使用自动验证数据集 Keras可将你的训练数据的一部分分成验证数据集,然后评估每个周期该验证数据集的性能。...你学到了三种方法,你可以使用Python中的Keras库来评估深度学习模型的性能: 使用自动验证数据集。 使用手动验证数据集。 使用手动k-折交叉验证。

    2.2K80

    基于Keras进行迁移学习

    编者按:数据科学家Prakash Jay介绍了迁移学习的原理,基于Keras实现迁移学习,以及迁移学习的常见情形。 ? Inception-V3 什么是迁移学习?...机器学习中的迁移学习问题,关注如何保存解决一个问题时获得的知识,并将其应用于另一个相关的不同问题。 为什么迁移学习? 在实践中,很少有人从头训练一个卷积网络,因为很难获取足够的数据集。...而在少量数据集上训练数百万参数的网络通常会导致过拟合。所以迁移学习是我的救星。 迁移学习为何有效?...下面,让我们看下如何使用Keras实现迁移学习,以及迁移学习的常见情形。...你可以使用不同的网络,或者基于现有网络做些改动。 参考 cs231n课程中关于“迁移学习”的内容 Keras官网 来源:Prakash Jay 编译:weakish

    1.8K31

    Keras: 基于Python的深度学习库

    Keras 是一个用 Python 编写的高级神经网络 API,它能够以TensorFlow, CNTK或者 Theano作为后端运行。Keras 的开发重点是支持快速的实验。...能够以最小的时延把你的想法转换为实验结果,是做好研究的关键。 如果你在以下情况下需要深度学习库,请使用 Keras: 允许简单而快速的原型设计(由于用户友好,高度模块化,可扩展性)。...同时支持卷积神经网络和循环神经网络,以及两者的组合。 在 CPU 和 GPU 上无缝运行。...阅读网站:https://keras123.com/ 教程里有什么 教程目录 一、快速开始 Sequential顺序模型指引 函数式API指引 FAQ常见问题解答 二、模型 关于Keras模型 Sequential...顺序模型 Model(函数式API) 三、网络层 ‍关于Keras网络层 核心网络层 卷积层Convolutional Layers 池化层Pooling Layers 局部连接层Locally-connected

    81030

    深度学习框架Keras简介

    深度学习的框架Tensorflow,Pytorch,Keras,Theano..,每个都有它自身的优势,有的性能好,有的学习曲线平滑,有的部署方便。 这一小节,简单介绍一下Keras....Keras 遵循减少认知困难的最佳实践: 它提供一致且简单的 API,它将常见用例所需的用户操作数量降至最低,并且在用户错误时提供清晰和可操作的反馈。 这使 Keras 易于学习和使用。...它尤其受以深度学习作为产品核心的创业公司的欢迎。 Keras也是深度学习研究人员的最爱,在上载到预印本服务器 arXiv.org 的科学论文中被提及的次数位居第二。...---- Keras 支持多个后端引擎,不会将你锁定到一个生态系统中 你的 Keras 模型可以基于不同的深度学习后端开发。...Keras 的发展得到深度学习生态系统中的关键公司的支持 Keras 的开发主要由谷歌支持,Keras API 以 tf.keras 的形式包装在 TensorFlow 中。

    1.2K60
    领券