Function API介绍 在function API中,可以直接操作张量,并将图层用作使用张量和返回张量的函数。...看起来有点神奇的唯一部分是仅使用输入张量和输出张量实例化Model对象。...通常,此类模型在某些时候使用可以组合多个张量的图层合并它们的不同输入分支:通过添加,连接等操作。...当调用图层实例两次时,不是为每个调用实例化一个新图层,而是在每次调用时重复使用相同的权重。这允许构建具有共享分支的模型---几个分支都具有相同的知识并执行相同的操作。...API中,可以将模型视为“更大的图层”,这意味着可以在输入张量上调用模型并检索输出张量: y = model(x) 如果模型有多个输入和输出: y1,y2 = model([x1,x2]) 当调用模型实例时
网络层的实例是可调用的,它以张量为参数,并且返回一个张量 输入和输出均为张量,它们都可以用来定义一个模型(Model) 这样的模型同 Keras 的 Sequential 模型一样,都可以被训练 from...注意,在调用模型时,您不仅重用模型的结构,还重用了它的权重。 x = Input(shape=(784,)) # 这是可行的,并且返回上面定义的 10-way softmax。...层「节点」的概念 每当你在某个输入上调用一个层时,都将创建一个新的张量(层的输出),并且为该层添加一个「节点」,将输入张量连接到输出张量。...当多次调用同一个图层时,该图层将拥有多个节点索引 (0, 1, 2...)。...在之前版本的 Keras 中,可以通过 layer.get_output() 来获得层实例的输出张量,或者通过 layer.output_shape 来获取其输出形状。
尽管Keras的生产率很高且易于使用,但对于研究用例通常缺乏灵活性。 随着TensorFlow迈入2.0时代,相比上一代进行了非常大的改动。...能用代码解释就绝不用文字,比如: Tensor 常量张量: ? 通过调用.numpy()来获取其作为Numpy数组的值: ? 与Numpy数组非常相似,它具有dtype和shape属性: ?...如果你是研究人员,则可能不希望不使用这些内置模块,例如图层和训练循环,而是创建自己的模块。当然,Keras允许你执行此操作。...所有工作流程都是兼容的,因为它们是基于相同的概念和对象构建的。 ?...对于此类层,标准做法是在call方法中公开训练(布尔)参数。 通过在调用中公开此参数,可以启用内置的训练和评估循环(例如,拟合)以在训练和推理中正确使用该图层。 ?
然后,用户需要通过将一组输出张量和输入张量传递给 session.run()* 函数调用来手动编译抽象语法树。...但是,便携式TensorFlow在没有Python解释器上下文时执行 - 移动、C++和JS。...为了帮助用户避免在添加@tf.function时重写代码, AutoGraph 会将部分Python构造转换为他们的TensorFlow等价物。...使用Keras图层和模型来管理变量 Keras模型和图层提供方便的变量和 trainable_variables 属性,以递归方式收集所有关联变量,这样可以轻松地将变量本地管理到它们的使用位置。...Keras层/模型继承自tf.train.Checkpointable并与@ tf.function集成,这使得直接获得检查点或从Keras对象导出SavedModel成为可能。
模块化和可组合:Keras模型将可配置的构建块连接在一起,几乎没有限制。无需使用框架甚至不了解框架提供的所有内容的情况下,Keras的部件也可以重复使用。...例如,您可以使用图层或优化器而无需使用Keras Model 进行训练。 易于扩展:您可以编写自定义构建块来表达新的研究想法,包括新的图层、损失函数和[在此插入您的想法]以开发最先进的想法。...使用tf.keras模型子类API时,eager execution特别有用。此API的灵感来自Chainer,使您能够强制性地编写模型的正向传递。...Sequential API 如果您是学习ML的学生,我们建议您开始时使用tf.keras Sequential API。它直观、简洁,适用于实践中95%的ML问题。...在使用Functional API构建模型时,图层是可以调用(在张量上)的,并返回张量作为输出。然后可以使用这些输入张量和输出张量来定义模型。
对象 activity_regularizer:施加在输出上的正则项,为Regularizer对象 kernel_constraints:施加在权重上的约束项,为Constraints对象 bias_constraints...verbose:日志显示,0为不在标准输出流输出日志信息,1为输出进度条记录,2为每个epoch输出一行记录 callbacks:list,其中的元素是keras.callbacks.Callback的对象...对象 mask_zero:布尔值,确定是否将输入中的‘0’看作是应该被忽略的‘填充’(padding)值,该参数在使用递归层处理变长输入时有用。...设置为True的话,模型中后续的层必须都支持masking,否则会抛出异常。如果该值为True,则下标0在字典中不可用,input_dim应设置为|vocabulary| + 2。...以大写首字母开头的是Layer类,以小写字母开头的是张量的函数。小写字母开头的张量函数在内部实际上是调用了大写字母开头的层。 Add keras.layers.Add() 添加输入列表的图层。
在Keras深度学习库中,可以使用LSTM()类别来创建LSTM神经层。而且每一层LSTM单元都允许我们指定图层内存储单元的数量。...Keras API允许我们访问这些"内部状态"数据,这些数据在开发复杂的循环神经网络架构(如encoder-decoder模型)时可能有用,甚至是必需的。...h = LSTM(X) 我们可以在Keras中用一个非常小的模型来观察这一点,该模型具有单个LSTM层(其本身包含单个"LSTM"单元)。...这可以通过在定义LSTM层时将return_sequences属性设置为True,如下所示: LSTM(, return_sequences=True) 我们可以修改更新前一个例子。...array([[ 0.09158381]], dtype=float32), array([[ 0.20488389]], dtype=float32)] 运行这个例子,我们现在可以看到为什么LSTM输出张量和隐藏状态输出张量被分开声明
返回值:被包裹的输入张量。3、add_outputadd_output( *args, **kwargs)在提示中添加一个包装好的输出参数。参数:*args:输出张量。...另外,请注意,这个函数释放了GIL,因此在Python解释器继续运行时,可以在后台完成繁重的计算。当invoke()调用尚未完成时,不应调用此对象上的任何其他函数。...优先选择——output_format=GRAPHVIZ_DOT,以便保留输出文件的需求。(默认没有)dump_graphviz_video:布尔值,指示是否在每次图形转换之后转储图形。...仅当图无法加载到TensorFlow中,且input_tensors和output_tensors为空时才使用。(默认没有)output_arrays:用于冻结图形的输出张量列表。...(默认没有)output_arrays:用于冻结图形的输出张量列表。如果没有提供SignatureDef的输出数组,则使用它。
简单来说,它是一个简单的线性结构,没有多余分支,是多个网络层的堆叠。...也可以是已经命名的输入图层的名称。 如果从框架原生张量(例如TensorFlow数据张量)进行馈送,则x可以是None(默认)。 y 与x相似,只不过y代表的是目标标签(target label)。...可以是:Numpy目标(标签)数据数组(如果模型具有单个输出)或Numpy数组列表(如果模型具有多个输出)或 输入图层的名称 或None. batch_size Integer 或 None,代表每个梯度更新的样本数...Model 模型 ---- 参考Keras文档:https://keras.io/models/model/ ---- Model 模型是带有函数API的,不是线性的,它是一个可以多输入、多输出的模型。...返回 一个History实例, 其History.history属性是连续时期的训练损失值和度量值的记录,以及验证损失值和验证度量值(如果适用)。
哦对了,甚至别指望打印出图层的一个输出,因为你只会在终端上打印出一个漂亮的Tensor定义。 相比起来,PyTorch在这些方面就做的更让人欣慰一些。...你需要知道每个层的输入和输出大小,但这很快就能掌握。同时你也不必处理构建一个无法在调试中看到的抽象计算图。 PyTorch的另一个优势是可以在Torch Tensors和Numpy阵列之间来回切换。...而反观TF,如果需要实现自定义的东西,在TF张量和Numpy阵列之间来回转换可能会很麻烦,需要开发人员对TensorFlow会话有充分的了解。 PyTorch上这种操作实际上要简单得多。...同时,由于这些模型训练步骤在训练不同模型时基本保持不变,因此非常不必要。 控制CPU与GPU模式 ? 如果安装了tensorflow-gpu,默认情况下在Keras中启用并完成使用GPU。...选择框架的建议 Seif通常给出的建议是从Keras开始,毕竟又快、又简单、又好用!你甚至可以执行自定义图层和损失函数的操作,而无需触及任何一行TensorFlow。
我在自律性方面还是差很多,以后要多加强。 在选择深度学习框架时,估计不少人都曾经纠结过选择哪种框架。...哦,甚至不要考虑尝试打印出图层的一个输出,因为这样只会在终端上打印出一个漂亮的Tensor定义。 Pytorch在这些方面倾向于更加宽容。...您需要知道每个层的输入和输出大小,但这是一个可以很快掌握的简单方面之一。您不必处理和构建一个您无法在调试中看到的抽象计算图。...Pytorch的另一个好处是您可以在Torch 张量和Numpy阵列之间来回切换。...但与此同时,由于这些模型训练步骤在训练不同模型时基本保持不变,因此非常不必要。 (4) 控制 CPU 和 GPU 模式 ?
, b3, b3]) 常用Model属性 model.layers:组成模型图的各个层 model.inputs:模型的输入张量列表 model.outputs:模型的输出张量列表 ---- Model...fit函数返回一个History的对象,其History.history属性记录了损失函数和其他指标的数值随epoch变化的情况,如果有验证集的话,也包含了验证集的这些指标变化情况 ---- evaluate...参数 layers:该参数为Keras张量的列表,或Keras层对象的列表。...如果output_shape是函数时,该函数的输入值应为一一对应于输入shape的list,并返回输出张量的shape。...如果没有提供,该参数的默认值为全0向量,即合并输入层0号节点的输出值。 tensor_indices:可选,为整数list,如果有些层返回多个输出张量的话,该参数用以指定需要合并的那些张量。
您可以将其绘制为图像以显示图(使用 keras.utils.plot_model),或者直接使用 model.summary(),或者参见图层,权重和形状的描述来显示图形 同样,在将图层连接在一起时,库设计人员可以运行广泛的图层兼容性检查...(在构建模型时和执行之前)。...在符号化 API 中,您正在操作 “符号张量”(这些是尚未保留任何值的张量)来构建图。Keras Sequential 和 Functional API “感觉” 势在必行。...局限性 重要的是,在使用命令式 API 时,您的模型由类方法的主体定义的。您的模型不再是透明的数据结构,它是一段不透明的字节码。在使用这种风格时,您需要牺牲可用性和可重用性来获得灵活性。...在执行期间进行调试,而不是在定义模型时进行调试。 输入或层间兼容性几乎没有被检查到,因此在使用此样式时,很多调试负担从框架转移到开发人员 命令式模型可能更难以重用。
我特别喜欢的一项功能是能够轻松地创建一个自定义的Dataset对象,然后可以与内置的DataLoader一起在训练模型时提供数据。...具体地说,我们想创建一个管道,从The Elder Scrolls(TES)系列中获取名称,这些名称的种族和性别属性作为一个one-hot张量。...如果您熟悉的话,这个对象跟Keras中的flow数据生成器函数很类似。...如果批处理大小为1,则单个张量不会与(可能)不同长度的其他任何张量堆叠在一起。但是,这种方法在进行训练时会受到影响,因为神经网络在单批次(batch)的梯度下降时收敛将非常慢。...random_split 函数接受一个数据集和一个划分子集大小的列表,该函数随机拆分数据,以生成更小的Dataset对象,这些对象可立即与DataLoader一起使用。这里有一个例子。
1.定义训练数据 第一步很简单:您必须定义输入和目标张量。...这种复杂性最好地体现在多输入模型,多输出模型和类图模型的定义的用例中。 我们的示例中的代码使用Sequential类。它首先调用构造函数,然后调用add()方法将图层添加到模型中。...Dense图层的输出大小为16,输入大小为INPUT_DIM,在我们的例子中为32(请查看上面的代码片段进行确认)。请注意,只有模型的第一层需要明确说明输入维度;以下层能够从先前的线性堆叠层推断出。...在我们的示例中,设置为多类分类问题,我们将使用Adam优化器,分类的交叉熵损失函数,并且仅包括准确度度量。...fit()至少需要2个参数:输入和目标张量。 如果没有提供更多内容,则会执行一次训练数据迭代,这通常对您没有任何好处。
这种观念在Keras中非常有用,因为传统上在一个图层中完成的各种事情,可以被拆分到多个图层中逐一完成,然后再添加、堆叠起来,这样可以清楚地显示出各个小图层在从输入数据到做出预测这一过程中的数据转换中的作用...,这个对象提供了训练过程中模型性能的各种信息的概览,包括损失函数的结果和编译模型时指定的任何其他指标。...网络可以在训练数据上进行评估,但是这并不能提供关于这个网络预测能力的信息,因为这个网络模型就是在训练数据上建立起来的。 我们可以在另一个在训练时没有用到的数据集上评估网络的性能。...这让我们估计这个网络在未来对没有见过的数据进行预测时的性能。...在Keras中,用这个训练好的网络模型在测试数据集上进行测试时,可以看到包括损失函数的结果在内的所有在编译时指定的测量指标的结果,比如分类的准确度。Keras会返回一个包含这些评估指标的list。
在DataFrame对象中,可以直接对2个时间格式数据进行相减,得到时间间隔。但是这个不是数值型,我们还需要进行处理。 先根据业务逻辑把最近登录时间缺失的部分替换为注册时间。...test_size代表测试的大小,0.33也就是训练集和测试集的比为3:1,random_state代表区分的随机标准,这个如果不确定的话,每次拆分的结果也就是不一样,这属性是为了数据可以复现。...首先定义一个对象,sc = StandardScaler(),然后把数据集放进去就可以直接输出一个标准化完成的数据集。输出的数据集如上图所示。...fan_in为权值张量的输入单元数,fan_out是权重张量的输出单元数。...性能评估模块提供了一系列用于模型性能评估的函数,这些函数在模型编译时由metrics关键字设置。性能评估函数类似与目标函数, 只不过该性能的评估结果讲不会用于训练。
默认是image_dim_ordering指定的模式,可在~/.keras/keras.json中查看,若没有设置过则为'tf'。...默认是image_dim_ordering指定的模式,可在~/.keras/keras.json中查看,若没有设置过则为'tf'。...默认是image_dim_ordering指定的模式,可在~/.keras/keras.json中查看,若没有设置过则为'tf'。...默认是image_dim_ordering指定的模式,可在~/.keras/keras.json中查看,若没有设置过则为'tf'。...要启用状态RNN,请在实例化层对象时指定参数stateful=True,并指定模型使用固定大小的batch:通过在模型的第一层传入batch_input_shape=(...)来实现。
Github中的obtain-data.sh用来下载数据集,with-keras/train.py用来训练模型并把训练后的权重输出到C++文件中。...了解张量的形状是不够的:我们也必须知道哪个索引是哪个属性。...张量的这个定义对我们来说已经足够了,但是在数学中,张量不仅仅是一个数列,而是一个在代数空间中的对象,并且可以以该空间进行操纵。而我们在这里不予考虑。 模型中的层 每个图层函数都需要一个张量作为输入。...在许多神经学习的函数中,如Keras,可以指定在卷积时是否进行填充的参数,而不用多加一个函数。我这样做是为了能更加清晰的表示其过程。...在Keras还有另外一中层,dropout层。我们的代码中没有这一层,因为它只在训练时使用。 它丢弃了输入传递给它的一部分值,这可以帮助后续层在训练时不会过拟合。
领取专属 10元无门槛券
手把手带您无忧上云