首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

使用Keras集成卷积神经网络的入门级教程

在统计学和机器学习中,组合使用多种学习算法往往比单独的任何的学习算法更能获得好的预测性能。...与统计力学中的统计集成不同(通常是无穷大),机器学习的集成由具体的有限的替代模型集合构成,但通常在这些备选方案中存在更灵活的结构。...Conv2D(10,1,1)层的输出中没有应用激活函数。...论文:https://arxiv.org/abs/1312.4400 我在这里使用1×1内核的卷积层,而不再使用多层感知器内的多层感知器卷积层。...论文中认为,多层感知器网络层的应用功能等价于在常规的卷积层上的cccp层(cascaded cross channel parametric pooling),而后者又等价于具有1×1卷积核的卷积层(如果此处我的解释不正确

1K50

深度学习图像识别项目(中):Keras和卷积神经网络(CNN)

Keras和卷积神经网络 上篇文章中,我们学习了如何快速构建深度学习图像数据集 ,我们使用该文章中介绍的过程和代码来收集,下载和整理磁盘上的图像。...现在我们已经下载和组织了我们的图像,下一步就是在数据之上训练一个卷积神经网络(CNN)。 我会在今天文章中向你展示如何使用Keras和深入的学习来训练你的CNN。...我们的目标是训练一个使用Keras和深度学习的卷积神经网络来识别和分类这些口袋妖怪。...pokedex.model :这是我们的系列化Keras卷积神经网络模型文件(即“权重文件”)。...在处理你自己的数据时请记住这一点。 在下篇文章中,我将展示如何将我们训练的Keras +卷积神经网络模型部署到智能手机!

9.3K62
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    卷积神经网络中的Winograd快速卷积算法

    目录 写在前面 问题定义 一个例子 F(2, 3) 1D winograd 1D to 2D,F(2, 3) to F(2x2, 3x3) 卷积神经网络中的Winograd 总结 参考 博客:blog.shinelee.me...卷积神经网络中的Winograd 要将Winograd应用在卷积神经网络中,还需要回答下面两个问题: 上面我们仅仅是针对一个小的image tile,但是在卷积神经网络中,feature map的尺寸可能很大...在卷积神经网络中,feature map是3维的,卷积核也是3维的,3D的winograd该怎么做?...注意图中的Matrix Multiplication,对应3维卷积中逐channel卷积后的对应位置求和,相当于\((m+r-1)^2\)个矩阵乘积,参与乘积的矩阵尺寸分别为\(\lceil H / m...只适用于较小的卷积核和tile(对大尺寸的卷积核,可使用FFT加速),在目前流行的网络中,小尺寸卷积核是主流,典型实现如\(F(6\times 6, 3\times 3)\)、\(F(2\times 2

    2.4K40

    深入理解卷积神经网络中的卷积

    卷积神经网络是一种特殊的神经网络结构,是自动驾驶汽车、人脸识别系统等计算机视觉应用的基础,其中基本的矩阵乘法运算被卷积运算取代。它们专门处理具有网格状拓扑结构的数据。...历史 卷积神经网络最初是由福岛邦彦在1980年引入的,模型名为Neocognitron。它的灵感来自于Hubel和Weisel提出的神经系统的层次模型。...此后,卷积神经网络不断向前发展,基于CNN的体系结构不断赢得ImageNet, 2015年,基于卷积神经网络的体系结构ResNet的误差率超过人类水平的5.1%,误差率为3.57%。...在卷积运算中,首先将核翻转180度,然后应用于图像。卷积的基本性质是将一个核与一个离散的单位脉冲进行卷积,在脉冲的位置上得到一个核的拷贝。...卷积运算同样遵循平移不变性和局部性的性质。 ? 注意: 尽管这两个操作稍有不同,但是所使用的核是否对称并不重要。 结论: 在这篇文章中,我们简要讨论了卷积神经网络的历史和一些特性。

    1.2K20

    用Keras通过Python进行卷积神经网络的手写数字识别

    通过本次教程,你会知道: 如何在Keras中加载MNIST数据集。 如何构建和评估MNIST问题的基本神经网络模型。 如何实现和评估一个简单的MNIST卷积神经网络。...使用预测误差来判断结果,只不过是逆分类的准确度。 理想的结果要求达到小于1%的预期错误率。用大型卷积神经网络可以达到约0.2%错误率。...在本节中,我们将创建一个简单的多层感知器模型,达到仅有1.74%的错误率的效果。我们将用它作为更复杂的卷积神经网络模型的基础。 我们首先导入我们需要的类和函数。...Keras提供了很多创建卷积神经网络的方法。 在本节中,我们将为MNIST创建一个简单的CNN,演示如何使用CNN实现包括卷积图层,合并图层和压缩图层的方法。 第一步是导入所需的类和函数。...如何使用Keras为MNIST创建卷积神经网络模型。 如何开发和评估具有近乎世界一流水平的更大的CNN模型。

    5.9K70

    【视频】CNN(卷积神经网络)模型以及R语言实现回归数据分析|附代码数据

    输入层由p个预测变量或输入单位/节点组成。不用说,通常最好将变量标准化。这些输入单元可以连接到第一隐藏层中的一个或多个隐藏单元。与上一层完全连接的隐藏层称为密集层。在图中,两个隐藏层都是密集的。...损失函数有很多类型,所有目的都是为了量化预测误差,例如使用交叉熵 。流行的随机优化方法如Adam。 卷积神经网络  卷积神经网络是一种特殊类型的神经网络,可以很好地用于图像处理,并以上述原理为框架。...在下面描述的示例中,卷积神经网络可能会沿着一系列涉及卷积,池化和扁平化的变换链处理喙状结构,最后,会看到相关的神经元被激活,理想情况下会预测鸟的概率是竞争类中最大的。 ...我们之前使用Python进行CNN模型回归 ,在本视频中,我们在R中实现相同的方法。 我们使用一维卷积函数来应用CNN模型。我们需要Keras R接口才能在R中使用Keras神经网络API。...我们简要学习了如何使用R中的keras CNN模型拟合和预测回归数据。

    75800

    CNN(卷积神经网络)模型以及R语言实现

    视频:CNN(卷积神经网络)模型以及R语言实现 神经网络结构 神经网络通常包含一个输入层,一个或多个隐藏层以及一个输出层。输入层由p个预测变量或输入单位/节点组成。不用说,通常最好将变量标准化。...卷积神经网络 卷积神经网络是一种特殊类型的神经网络,可以很好地用于图像处理,并以上述原理为框架。名称中的“卷积”归因于通过滤镜处理的图像中像素的正方形方块。...在下面描述的示例中,卷积神经网络可能会沿着一系列涉及卷积,池化和扁平化的变换链处理喙状结构,最后,会看到相关的神经元被激活,理想情况下会预测鸟的概率是竞争类中最大的。 ?...我们之前使用Python进行CNN模型回归 ,在本视频中,我们在R中实现相同的方法。 我们使用一维卷积函数来应用CNN模型。我们需要Keras R接口才能在R中使用Keras神经网络API。...在本教程中,我们简要学习了如何使用R中的keras CNN模型拟合和预测回归数据。 ---- ? 最受欢迎的见解

    3.1K20

    【视频】CNN(卷积神经网络)模型以及R语言实现回归数据分析|附代码数据

    输入层由p个预测变量或输入单位/节点组成。不用说,通常最好将变量标准化。这些输入单元可以连接到第一隐藏层中的一个或多个隐藏单元。与上一层完全连接的隐藏层称为密集层。在图中,两个隐藏层都是密集的。...权重图中显示的每个箭头都会传递与权重关联的输入。每个权重本质上是许多系数估计之一,该系数估计有助于在相应箭头指向的节点中计算出回归。这些是未知参数,必须使用优化过程由模型进行调整,以使损失函数最小化。...损失函数有很多类型,所有目的都是为了量化预测误差,例如使用交叉熵。流行的随机优化方法如Adam。卷积神经网络 卷积神经网络是一种特殊类型的神经网络,可以很好地用于图像处理,并以上述原理为框架。...在下面描述的示例中,卷积神经网络可能会沿着一系列涉及卷积,池化和扁平化的变换链处理喙状结构,最后,会看到相关的神经元被激活,理想情况下会预测鸟的概率是竞争类中最大的。 ...我们之前使用Python进行CNN模型回归 ,在本视频中,我们在R中实现相同的方法。我们使用一维卷积函数来应用CNN模型。我们需要Keras R接口才能在R中使用Keras神经网络API。

    1.4K30

    【视频】CNN(卷积神经网络)模型以及R语言实现回归数据分析

    输入层由p个预测变量或输入单位/节点组成。不用说,通常最好将变量标准化。这些输入单元可以连接到第一隐藏层中的一个或多个隐藏单元。与上一层完全连接的隐藏层称为密集层。在图中,两个隐藏层都是密集的。...损失函数有很多类型,所有目的都是为了量化预测误差,例如使用交叉熵 。流行的随机优化方法如Adam。 卷积神经网络 卷积神经网络是一种特殊类型的神经网络,可以很好地用于图像处理,并以上述原理为框架。...在下面描述的示例中,卷积神经网络可能会沿着一系列涉及卷积,池化和扁平化的变换链处理喙状结构,最后,会看到相关的神经元被激活,理想情况下会预测鸟的概率是竞争类中最大的。...我们之前使用Python进行CNN模型回归 ,在本视频中,我们在R中实现相同的方法。 我们使用一维卷积函数来应用CNN模型。我们需要Keras R接口才能在R中使用Keras神经网络API。...我们简要学习了如何使用R中的keras CNN模型拟合和预测回归数据。

    55510

    卷积神经网络中的自我注意

    其中,C是通道的数量,N是所有其他维度的乘积(稍后我们将看到代码) 对x进行1x1卷积,得到f, g, h。这将改变通道的数量从C到C*: ? ?...计算f(x)和g(x)中像素位置之间的一系列softmax权重: ? 这些权重称为“注意力图”,本质上是量化图像中像素j相对于像素i的“重要性”。...由于这些权重(β)是在特征集的整个高度和宽度上计算的,因此接收场不再局限于小内核的大小。 将自我注意层的输出计算为: ? ? 这里,v是另一个1x1卷积的输出。...作为最后一步,我们将输入特征x添加到输出的加权中(gamma是另一个可学习的标量参数): ?...第17行:恢复特征的原始形状 此实现与本文中描述的算法有所不同(但等效),因为它将1x1卷积v(x)和h(x)组合在一起,并且调用为h(x)或“值”。组合的1x1转换层具有C个输入通道和C个输出通道。

    78810

    【深度学习篇】--神经网络中的卷积神经网络

    2、卷积层理解 CNN里面最重要的构建单元就是卷积层 神经元在第一个卷积层不是连接输入图片的每一个像素,只是连接它们感受野的像素,以此类推, 第二个卷积层的每一个神经元仅连接位于第一个卷积层的一个小方块的神经元...,这种情况下,输出神经元个数等于输入神经元个数除以步长 ceil(13/5)=3,当步长为1时卷积完后的长宽一样,像素点一样,维度一样(输入神经元的个数和输出神经元的个数一样)  4、卷积的计算 假设有一个...5*5的图像,使用一个3*3的filter(卷积核)进行卷积,想得到一个3*3(没有使用Zero_padding,因为下一层和上一层长宽不一样)的Feature Map。...结论: 在一个卷积层里面可以有多个卷积核,每一个卷积核可以有多个维度 每一个卷积核生成一个Feature_map,因为有两个卷积核,所以生成两个Feacture_Map 7、卷积核的设置 Vertical...X = tf.placeholder(tf.float32, shape=(None, height, width, channels)) # strides=[1, 2, 2, 1] 中第一最后一个为

    53110

    MATLAB中用BP神经网络预测人体脂肪百分比数据|附代码数据

    ,给定已知的输入,而且还可以泛化,来准确估计未知数据的结果。...train(net,X,T);要看网络的性能在训练中是如何提高的,可以点击训练工具中的 "性能 "按钮。性能是以均方误差来衡量的,并以对数比例显示。随着网络的训练,误差迅速减小。...LSTM长短期记忆神经网络的参数优化方法预测时间序列洗发水销售数据Python用Keras神经网络序列模型回归拟合预测、准确度检查和结果可视化R语言深度学习卷积神经网络 (CNN)对 CIFAR 图像进行分类...R语言KERAS深度学习CNN卷积神经网络分类识别手写数字图像数据(MNIST)MATLAB中用BP神经网络预测人体脂肪百分比数据Python中用PyTorch机器学习神经网络分类预测银行客户流失模型R...使用长短期记忆(LSTM)神经网络对序列数据进行分类R语言实现拟合神经网络预测和结果可视化用R语言实现神经网络预测股票实例使用PYTHON中KERAS的LSTM递归神经网络进行时间序列预测python用于

    96300

    如何理解卷积神经网络中的1*1卷积?

    我们都知道,卷积核的作用在于特征的抽取,越是大的卷积核尺寸就意味着更大的感受野,当然随之而来的是更多的参数。...但是在学习卷积神经网络的过程中,我们常常会看到一股清流般的存在—1*1的卷积! 比如在残差网络的直连里: ? 残差网络的Bootleneck残差模块里: ?...在GoogleNet的Inception模块里: ? 都有1*1卷积核的出现,那么它到底是做什么的?我们应该如何理解1*1卷积的原理?...举个例子,比如某次卷积之后的结果是W*H*6的特征,现在需要用1*1的卷积核将其降维成W*H*5,即6个通道变成5个通道: 如下图就是一个W*H*6的特征,而1*1的卷积核在图上标出,卷积核自身的厚度也是...通过一次卷积操作,W*H*6将变为W*H*1,这样的话,使用5个1*1的卷积核,显然可以卷积出5个W*H*1,再做通道的串接操作,就实现了W*H*5。

    1.6K10

    C++ 中的卷积神经网络 (CNN)

    有很多卷积神经网络文章解释了 CNN 是什么以及它的用途是什么,而本文将用 C++ 编写一个 CNN 和一个名为 mlpack 的库来对MNIST数据集进行分类。...二、MINST数据集 我们要使用的数据包含在一个 CSV 文件中,由 0 到 9 的数字图像组成,其中列包含标签,行包含特征,但是当我们要将数据加载到矩阵中时,数据将被转置,并且提到哪个特征的标签也将被加载...让我们处理和删除描述每一行中包含的内容的列,如我在数据部分所述,并为训练、验证和测试集的标签和特征创建一个单独的矩阵。...它的标签从 1 而不是 0 开始,因此我们在标签中添加了 1。...三、卷积框架 现在让我们看一下我们将要定义的简单卷积架构。

    1.5K20

    如何理解卷积神经网络中的1*1卷积

    我们都知道,卷积核的作用在于特征的抽取,越是大的卷积核尺寸就意味着更大的感受野,当然随之而来的是更多的参数。...但是在学习卷积神经网络的过程中,我们常常会看到一股清流般的存在—1*1的卷积! 比如在残差网络的直连里: ? 残差网络的Bootleneck残差模块里: ?...在GoogleNet的Inception模块里: ? 都有1*1卷积核的出现,那么它到底是做什么的?我们应该如何理解1*1卷积的原理?...举个例子,比如某次卷积之后的结果是W*H*6的特征,现在需要用1*1的卷积核将其降维成W*H*5,即6个通道变成5个通道: 如下图就是一个W*H*6的特征,而1*1的卷积核在图上标出,卷积核自身的厚度也是...通过一次卷积操作,W*H*6将变为W*H*1,这样的话,使用5个1*1的卷积核,显然可以卷积出5个W*H*1,再做通道的串接操作,就实现了W*H*5。

    1.2K100

    深度学习(二)神经网络中的卷积和反卷积原理

    在深度学习的过程中,很多神经网络都会用到各种卷积核来进行操作,那么我们就简单讲一下卷积的原理和实现过程。...那么卷积在神经网络中的作用是什么呢?一开始的传统神经网络是没有卷积层的,都是隐藏层加生全连接层的结构,这样在中间得到的特征都是线性的,不能提取到一个局部的特征。...而卷积神经网络的出现解决了这个问题,通过对一个局部区域进行卷积操作得到这个局部区域的特征值传入下层大大提升了神经网络提取特征的能力,并且还减小了数据的大小。 那么看看卷积的过程: ?...)一小块区域的特征,而不必像传统神经网络一样一个值一个值的提取。...二.反卷积   既然有卷积过程那么肯定也有反卷积的过程对不对。不然怎么进行卷积神经网络的反向传导呢?嘿嘿 反卷积通常用于将低维特征映射成高维输入,与卷积操作的作用相反。还是看图比较舒服是吧: ?

    82610

    形象理解卷积神经网络(二)——卷积神经网络在图像识别中的应用

    卷积神经网络之父YannLeCuu在1988年提出卷积神经网络时,将这种网络命名为LeNet。现在的卷积神经网络都是基于类似LeNet的网络构架。下图是一个简单的卷积神经网络的图例。...一个卷积神经网络由一个或多个卷积层(Convolution)+池化层(Pooling),再加上一个全连结的前向神经网络组成。 卷积层Convolution 前面咱们已经知道图像卷积操作的原理了。...需要注意的是,在卷积神经网络的训练过程中,不仅前向神经网络的权重需要训练,卷积层中的卷积核,也是通过训练得到的。所以初始时,我们只定义卷积层的层数,以及每一层有多少卷积核,不对卷积核本身做定义。...当我们研究训练好的卷积核就能发现,神经网络训练出的卷积核很多对人来说是没有对应意义的。...下图是一个卷积神经网络在做物体识别中,对于人脸识别训练出的卷积核的一个图例。 这里介绍了一个基本的卷积神经网络的拓扑结构。在实际应用中,还会有一些细节上的考虑。

    1.4K100
    领券