首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

用 Keras 编写你的第一个人工神经网络

所有描述病人的输入变量都是数值。这便于直接用于需要数值输入输出的神经网络, 适合我们第一个 Keras 神经网络。...这是一个非常难回答的问题。这是启发式的,我们通过不断地试错找出最好的网络结构、一般来说,你需要足够大的网络去明白结构对于问题是否有用。在这个例子中, 我们使用三层全连接的结构。...你可以通过 evaluate() 函数在训练集评估你的模型, 使用你训练模型时相同的输出和输出。 这会针对每一个输出-输出产生预测并且收集分数,包括平均损失和其他我们定义的指标,比如准确率。...将这些放在一起 你已经看到用 Keras 创建你的第一个神经网络有多么简单、 运行以上的代码, 将会看到150个迭代中, 每次迭代的损失和准确率,以及最终的模型在训练集上的评估结果, 在我的 CPU 上耗时..., 将会打印出每个输出的预测值。

73350

【深度学习实战:kaggle自然场景的图像分类-----使用keras框架实现vgg16的迁移学习】

项目简介 本次数据集来自kaggle,该数据集包括自然场景的图像。模型应该预测每个图像的正确标签。 您的目标是实现分类问题的高精度。...加载和预处理图像数据,并将它们转化为适合输入到深度学习模型的格式。具体来说,就是从每个图像路径加载图像,进行归一化,并将所有图像存储为一个 NumPy 数组。...独热编码在深度学习中的使用非常普遍,尤其是对于分类问题,原因包括: 模型输出格式要求: 在多类别分类任务中,通常希望模型的输出是一个与类别数相同长度的向量,每个元素表示该类别的预测概率。...独热编码可以避免这种假设,因为每个类别都是独立的,并且没有显式的顺序。...过拟合的表现通常是训练准确率高而验证准确率低。 训练损失和验证损失也相近,表明模型的学习在训练集和验证集上都有较好的效果。

7610
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    《机器学习实战:基于Scikit-Learn、Keras和TensorFlow》第10章 使用Keras搭建人工神经网络

    使用这个规则的变体来训练感知器,该规则考虑了网络所犯的误差。更具体地,感知器一次被馈送一个训练实例,对于每个实例,它进行预测。对于每一个产生错误预测的输出神经元,修正输入的连接权重,以获得正确的预测。...训练中的每个周期,Keras会展示到目前为止一共处理了多少个实例(还带有进度条),每个样本的平均训练时间,以及在训练集和验证集上的损失和准确率(和其它指标)。...图10-12 学习曲线:每个周期的平均训练损失和准确率,验证损失和准确率 可以看到,训练准确率和验证准确率稳步提高,训练损失和验证损失持续下降。另外,验证曲线和训练曲线靠的很近,意味着没有什么过拟合。...概括来讲,对于许多问题,神经网络只有一或两层就够了。例如,只用一个隐藏层和几百个神经元,就能在MNIST上轻松达到97%的准确率;同样的神经元数,两个隐藏层,训练时间几乎相同,就能达到98%的准确率。...如果将损失作为学习率的函数画出来(学习率使用log),能看到损失一开始是下降的。过了一段时间,学习率会变得非常高,损失就会升高:最佳学习率要比损失开始升高的点低一点(通常比拐点低10倍)。

    3.3K30

    从零开始学Keras(二)

    与 MNIST 数据集一样,IMDB 数据集也内置于 Keras 库。它已经过预处理:评论(单词序列) 已经被转换为整数序列,其中每个整数代表字典中的某个单词。...填充列表,使其具有相同的长度,再将列表转换成形状为 (samples, word_indices) 的整数张量,然后网络第一层使用能处理这种整数张量的层(即 Embedding 层,本书后面会详细介绍)...构建网络   输入数据是向量,而标签是标量(1 和 0),这是你会遇到的最简单的情况。...validation accuracy') plt.xlabel('Epochs') plt.ylabel('Loss') plt.legend() plt.show()   点是训练损失和准确率...尝试使用 tanh 激活(这种激活在神经网络早期非常流行)代替 relu。   这些实验将有助于说服您,我们所做的架构选择都是相当合理的,尽管它们仍然可以改进!

    56210

    TensorFlow 2建立神经网络分类模型——以iris数据为例

    在此数据集中,这些字段存储的是代表花卉测量值的浮点数。 最后一列是标签:即我们想要预测的值。对于此数据集,该值为 0、1 或 2 中的某个整数值(每个值分别对应一个花卉名称)。...也许能,前提是反复分析该数据集,并最终确定花瓣和花萼测量值与特定品种的关系。对于更复杂的数据集来说,这会变得非常困难,或许根本就做不到。一个好的机器学习方法可为您确定模型。...损失越低,模型的预测效果就越好。 TensorFlow有许多可用于训练的优化算法。learning_rate 被用于设置每次迭代(向下行走)的步长。...在一个周期中,遍历训练 Dataset 中的每个样本,并获取样本的特征(x)和标签(y)。 根据样本的特征进行预测,并比较预测结果和标签。衡量预测结果的不准确性,并使用所得的值计算模型的损失和梯度。...例如,如果模型对一半输入样本的品种预测正确,则 准确率 为 0.5 。

    2.2K41

    基于MNIST手写体数字识别--含可直接使用代码【Python+Tensorflow+CNN+Keras】

    用于从输入的高维数组中提取特征。卷积层的每个过滤器就是一个特征映射,用于提取某一个特征, # 过滤器的数量决定了卷积层输出特征个数,或者输出深度。...(-1, 28), cmap='Purples') # 设置不显示坐标轴 plt.axis('off') #做出判断,实际数字与预测数字是否相同,如果不相同则字体颜色为红色...用于从输入的高维数组中提取特征。卷积层的每个过滤器就是一个特征映射,用于提取某一个特征, # 过滤器的数量决定了卷积层输出特征个数,或者输出深度。...(-1, 28), cmap='Purples') # 设置不显示坐标轴 plt.axis('off') #做出判断,实际数字与预测数字是否相同,如果不相同则字体颜色为红色...用于从输入的高维数组中提取特征。卷积层的每个过滤器就是一个特征映射,用于提取某一个特征, # 过滤器的数量决定了卷积层输出特征个数,或者输出深度。

    5.3K30

    创新AI算法交易:重新定义Bar、标签和平稳性(附代码)

    但我们开始意识到,对于“正常的”静态数据(如图像、文本、音频、表格数据等)不能用于金融时间序列分析。 问题不仅在于数据是随机的而且难以预测。...上面提到的所有方法都是为了创建包含相同数量信息的bars:Tick bars具有相同数量的交易,但是成交量可能非常不同,因此我们会更好地选择样本成交 bars,每个bars都有相同数量的股票交易。...下面你可以找到具有不同参数的不同bars的比较,以及它们的序列相关性、标准差和正态性测试等: ? 正如我们所看到的,对于每个参数,可选的bars都比时间bar表现得好(除了方差之外)。...,由于大部分机构和专业投资者对止盈损的定义中,通过开仓价或某一重要技术位置如前低、前高、20日均线加上N倍波动率是一个经典设置,作者大有通过这个来反推市场上大部分参与者的止盈止损位的意思,这一方法是否适有于散户为核心的国内市场也需要注意...使用非常简单的softmax回归作为分类算法,对收盘价、成交量和收益率进行标准化作为输入特征。

    1.9K42

    机器学习基础知识

    数据代表性:用来训练网络的数据应该尽量覆盖到整个样本的范围,通常做法是将数据随机打乱 时间序列:对于预测未来的模型,时间是一个重要的属性,对于这类问题,数据不应该被打乱 数据冗余:数据尽量不要有重复的样本...):若不同特征的范围差距非常大,会造成较大的梯度更新,导致模型无法收敛 取值较小(0-1) 同质性:不同特征值应该在大致相同的范围 特征标准化:是平均值为 0,标准差为 1。...机器学习通用流程 定义问题,收集数据 假设输出是可以根据输入进行预测的 假设可用的数据包足够多的信息,足以从学习输出和输入之间的关系 其他问题:有规律性的变化对数据的要求 输入数据是什么?预测什么?...(二分类、多分类、标量回归、向量回归、聚类、生成会强化学习) 做假设 选择衡量成功的指标(优化的目标) 平衡分类问题(每个类别的可能性相同)常用指标:精度和接收者操作特征曲线线下面积 类别不平衡问题:准确率和召回率...数据准备与初始化 对于图像处理 keras 有图像处理辅助工具的模块 from keras.preprocessing.image import ImageDataGenerator 数据格式化为机器学习的格式

    64320

    《机器学习实战:基于Scikit-Learn、Keras和TensorFlow》第12章 使用TensorFlow自定义模型并训练

    对于指标,处理方法有所不同。 自定义指标 损失和指标的概念是不一样的:梯度下降使用损失(比如交叉熵损失)来训练模型,因此损失必须是可微分的(至少是在评估点可微分),梯度不能在所有地方都是0。...再假设模型在第二个批次做了3次正预测,但没有一个预测对,则准确率是0%。如果对这两个准确率做平均,则平均值是40%。但它不是模型在两个批次上的准确率!...事实上,真正值总共有4个,正预测有8个,整体的准确率是50%。我们需要的是一个能跟踪真正值和正预测数的对象,用该对象计算准确率。...基于模型内部的损失和指标 前面的自定义损失和指标都是基于标签和预测(或者还有样本权重)。有时,你可能想基于模型的其它部分定义损失,比如隐藏层的权重或激活函数。...正则损失已经转变为单个的标量,所以只需求和就成(使用tf.add_n(),它能将相同形状和数据类型的张量求和)。 接着,让记录器计算损失相对于每个可训练变量的梯度(不是所有的变量!)

    5.3K30

    Python 深度学习第二版(GPT 重译)(三)

    这意味着您可以从初学者成长为专家,仍然可以以不同的方式使用相同的工具。 因此,并没有一种“真正”的使用 Keras 的方式。相反,Keras 提供了一系列工作流程,从非常简单到非常灵活。...函数式 API 是一种简单、类似于乐高的、但非常灵活的方式,用于定义这样的层图。 训练多输入、多输出模型 您可以像训练序贯模型一样训练模型,通过使用输入和输出数据的列表调用fit()。...输出特征图中的每个空间位置对应于输入特征图中的相同位置(例如,输出的右下角包含有关输入右下角的信息)。...每个拆分包含每个类别相同数量的样本:这是一个平衡的二元分类问题,这意味着分类准确率将是一个适当的成功衡量标准。...我们将使用 RMSprop 优化器,使用非常低的学习率。使用低学习率的原因是我们希望限制对我们正在微调的三层表示所做修改的幅度。更新过大可能会损害这些表示。

    32510

    基于Keras的多标签图像分类

    * 网络结构是输入层=你的特征的维度 * 隐藏层是500*100,激励函数都是relu。隐藏层的节点数量和深度请根据自己的数量来自行调整,这里只是举例。 * 输出层是你的label的维度。...、输入图片大小 IMAGE_DIMS : 因此,labels 就是一个嵌套列表的列表,每个子列表都包含两个元素。...最后就是保存模型,绘制曲线图的代码了: 在训练结束后,训练集和测试集上的准确率分别是 98.57% 和 98.42 ,绘制的训练损失和准确率折线图图如下所示,上方是训练集和测试集的准确率变化曲线,下方则是训练集和测试集的损失图...测试网络模型 训练好模型后,就是测试新的图片了,首先先完成代码 classify.py ,代码如下: 其他的样例图片都可以通过相同的命令,只需要修改输入图片的名字即可,然后就是其中最后一张图片,...是比较特殊的,输入命令如下所示: 展示的结果,这是一条黑色连衣裙,但预测结果给出黑色牛仔裤的结果。

    1.8K30

    四个用于Keras的很棒的操作(含代码)

    除非你的应用程序需要一些非常低级别和复杂的代码,否则Keras会为你提供最好的帮助! 而对于Keras来说,还有更多的东西可以满足你的需求。...自定义度量和损失函数 Keras自带许多内置度量和损失函数,这些函数在大多数情况下都非常有用。但很可惜,只有最常见的度量和损失函数是内置的。...所有度量基本都是某种形式的准确率,损失倒是有很多选择,但最新的研究成果并不多。如果你想要一些前沿的东西,你需要自己实现。 而这就是我们要做的了!...所有Keras损失和度量的定义方式与具有两个输入变量的函数相同:地面真值(ground truth)和预测值,函数始终返回度量或损失的值。...这可以通过使用Python的math,Keras或TensorFlow操作来实现。 看起来很简单!以下是如何创建和应用自定义损失和自定义度量的示例。我实现了通常用于度量图像质量的PSNR度量。

    3.1K40

    独家 | 一文带你上手卷积神经网络实战(附数据集、学习资料)

    对于数据集中的每一张照片,都要预测该图片中动物是狗的概率(1表示是狗,0表示是猫)。实际操作中,它被用来在Kaggle的排行榜上给模型打分。...而输出层是预测矢量,尺寸和类别数目相同。 如果你对整个框架还有印象,即输入->卷积->函数激活->Max pooling,那么最后给输出添加一个全连接层。...因为GPU在如矩阵乘积之类的并行任务中效率非常高。由于神经网络都是关于矩阵乘积,因此使用GPU会大大提升性能。...这样效率非常低,特别是使用你自己的电脑来操作。 我们会使用ImageDataGenerator函数。它能让你从训练集和验证集中无限批量的得到图片。...tqdm能够让你监督每个epoch验证损失和准确度。这对检查模型质量大有帮助。 分类结果 在验证集上我们的准确率达到89.4%。训练/验证误差和准确率显示在下文。

    5.6K92

    Python 深度学习第二版(GPT 重译)(二)

    更一般地,流形假设认为所有自然数据都位于编码它的高维空间中的低维流形上。这是关于宇宙中信息结构的一个非常强烈的陈述。据我们所知,这是准确的,也是深度学习有效的原因。...始终要问自己,你的数据中的每个特征是否都是在生产中以相同形式可用的? 6.1.4 选择成功的衡量标准 要控制某物,你需要能够观察它。要在项目上取得成功,你必须首先定义你所理解的成功。准确率?...对于平衡分类问题,每个类别等可能出现的情况下,准确率和受试者工作特征曲线(ROC)下的面积,简称为 ROC AUC,是常见的度量标准。...更一般地,流形假设认为所有自然数据都位于编码它的高维空间中的低维流形上。这是关于宇宙中信息结构的一个非常强烈的陈述。据我们所知,这是准确的,也是深度学习有效的原因。...始终要问自己,你的数据中的每个特征是否都是在生产中以相同形式可用的? 6.1.4 选择成功的衡量标准 要控制某物,你需要能够观察它。要在项目上取得成功,你必须首先定义你所理解的成功。准确率?

    33110

    《机器学习实战:基于Scikit-Learn、Keras和TensorFlow》第11章 训练深度神经网络

    实际上不可能保证两者都是一样的,除非这个层具有相同数量的输入和神经元(这两个数被称为该层的扇入fan-in和扇出fan-out),但是他们提出了一个很好的折衷办法,在实践中证明这个折中办法非常好:随机初始化连接权重必须如公式...z(i) 是BN操作的输出:它是输入的缩放和移位版本。 在训练时,BN将输入标准化,然后做了缩放和平移。测试时又如何呢?因为需要对实例而不是批次实例做预测,所以就不能计算每个输入的平均和标准差。...然后就可以用这些数据做预测,而不是批输入的平均值和标准差。但是,大部分批归一化实现是通过层输入的平均值和标准差的移动平均值来计算的。这也是Keras在BatchNormalization中使用的方法。...当训练架构与模型A相同的新模型时(称其为模型B),表现非常好(准确率97.2%)。但因为这是一个非常简单的任务(只有两类),所以准确率应该还可以更高。因为和任务A很像,所以可以尝试一下迁移学习。...最大范数正则化 另一种在神经网络中非常流行的正则化技术被称为最大范数正则化:对于每个神经元,它约束输入连接的权重w,使得 ∥ w ∥2 ≤ r,其中r是最大范数超参数,∥ · ∥2 是 l2 范数。

    1.4K10

    Python 深度学习第二版(GPT 重译)(一)

    自然地,它的输出与理想情况相去甚远,损失分数相应地非常高。但随着网络处理每个示例,权重会稍微朝正确方向调整,损失分数会减少。...更新模型的所有权重,以稍微减少这一批次上的损失。 最终,你会得到一个在训练数据上损失非常低的模型:预测值y_pred与期望目标y_true之间的匹配度很低。...尽管图 2.18 展示了在 1D 参数空间中的梯度下降,但在实践中,您将在高维空间中使用梯度下降:神经网络中的每个权重系数都是空间中的一个自由维度,可能有成千上万甚至数百万个。...让我们看看它是如何工作的。 自动形状推断:动态构建层 就像乐高积木一样,你只能“连接”兼容的层。这里的层兼容性概念特指每个层只接受特定形状的输入张量,并返回特定形状的输出张量。...您还可以使用它来监视您在验证数据上的损失和指标,这是模型在训练过程中没有看到的一组输入。 一旦您的模型训练完成,您可以使用model.predict()方法在新输入上生成预测。

    41310

    最简单入门深度学习

    ,卡路里作为输出,假设偏差b为90,权重w为2.5,当糖分为5时,卡路里为2.5*5+90=102.5; 多个输入 当我们期望使用多个输入而不是一个时,其实就是将多个输入连接并神经元,计算每个连接权重,...,多个输入拟合的则是超平面; Keras中使用线性单元 最简单的创建线性单元模型是通过keras.Sequential,可以通过dense层来创建上述提到的线性单元模型,对于一个有三个输入,一个输出的线性模型...,不同的问题使用的损失函数一般也是不同的,例如对于回归问题,即我们要预测的是数值,一个常用的用于回归问题的损失函数为MAE,即平均绝对误差,对于每个预测值y_pred,MAE计算它与y_true的差值的绝对值...,学习率越小意味着模型需要更多的batch来帮助其学习,学习率和batch size是两个训练过程中影响很大的参数,通常也是主要要调的超参数; 可惜的是,对于很多情况下都没有必要通过非常耗时的超参数调整来获取最优的结果...,并通过很有趣的动画方式展示了在不同的学习率、batch size、样本数量等情况下的模型迭代过程,对于理解各个参数的作用非常有帮助哦,这里展示其中一组参数下的训练过程: [666842-20201014191839561

    1.5K63

    最简单入门深度学习

    ,两个输入你和一个平面,多个输入拟合的则是超平面; Keras中使用线性单元 最简单的创建线性单元模型是通过keras.Sequential,可以通过dense层来创建上述提到的线性单元模型,对于一个有三个输入...; 损失函数 损失函数用于衡量模型的预测值与真实值之间的差异,不同的问题使用的损失函数一般也是不同的,例如对于回归问题,即我们要预测的是数值,一个常用的用于回归问题的损失函数为MAE,即平均绝对误差,对于每个预测值...; 可惜的是,对于很多情况下都没有必要通过非常耗时的超参数调整来获取最优的结果,Adam是一种不需要设置学习率的随机梯度下降算法,它不需要调试任何参数,或者说它是自调整的,因此它成为一种很好的通用优化方法...,从定义到设置其损失和优化方法,再到最后的训练过程,并通过很有趣的动画方式展示了在不同的学习率、batch size、样本数量等情况下的模型迭代过程,对于理解各个参数的作用非常有帮助哦,这里展示其中一组参数下的训练过程...分类问题 之前处理的都是回归问题,处理分类问题的区别只有以下两点: 损失函数:分类与回归在损失函数应用上不同,比如MAE和准确率; 输出层输出类型:也就是网络结构最后一层输出的内容,之前都是数值,如果是二分类问题

    66010

    基于Keras的imdb数据集电影评论情感二分类

    和MNIST数据集类似,IMDB数据集也集成在Keras中,同时经过了预处理:电影评论转换成了一系列数字,每个数字代表字典中的一个单词。...有两种转换方式: 填充列表使每个列表长度都相同,然后转换为整数类型的张量,形状为(samples, word_indices),使用张量作为神经网络的第一层(Embedding层,能处理这样的整数类型张量...但是,验证损失和验证集上的准确率却在第4次迭代左右开始变差----模型在训练集上表现良好,在没有见过的数据上表现很差(泛化能力差)。用术语讲,模型发生了过拟合。...88% 使用训练好的模型在新数据上做预测 使用训练好的模型做预测----训练模型的目的....可以使用predict函数对数据进行预测,给出为正面评论的概率。

    4.2K30
    领券