回归分析是实现从数据到价值的不二法门。 它主要包括线性回归、0-1回归、定序回归、计数回归,以及生存回归五种类型。 我们来讨论最基础的情况——一元线性回归。...最常见的拟合方法是最小二乘法,即OLS回归。它时刻关注着实际测量数据,以及拟合直线上的相应估计值,目的是使二者之间的残差有最小的平方和。...即: 为了使残差的平方和最小,我们只需要分别对a、b求偏导,然后令偏导数等于0。立即推出a、b值: 总之,OLS回归的原理是,当预测值和实际值距离的平方和最小时,我们就选定模型中的参数。...上图中P值显示,中证500收益率的系数显著;但沪深300收益率的系数并不显著,没有通过5%的显著性检验。 总结 OLS回归在计算成本等方面占有一定优势,但有时不太具有说服力。...这时我们如果仍采用普通最小二乘法估计模型参数,就会产生一系列不良的后果,如:参数估计量非有效、变量的显著性检验失去意义、模型的预测失效等。 所以,在本文中我们首先进行简单的ols回归。
首先看两个个结论: 结论一:方程组Ax=b的最小二乘解的通式为x=Gb+(I-GA)y, 其中G\in A\{1, 3\}, y是\mathbb C^n中的任意向量....结论二:只有A是满秩时, 矛盾方程组Ax=b 的最小二乘解才是唯一的, 且为x_0=(A^HA)^{-1}A^Hb. 否则, 便有无穷多个最小二乘解....下面看一个实例: 求矛盾方程组 \begin{cases}x_1+2x_2=1, \\2x_1+x_2=0, \\x_1+x_2=0\end{cases}的最小二乘解。...解: 系数矩阵A=\left[\begin{matrix}1&2\\2&1\\1&1\end{matrix}\right] 为列满秩矩阵,故矛盾方程有唯一最小二乘解: A^{(1, 3)}=(A^HA)...\\kx_n+b=y_n\end{cases} 这里的k和b为变量,使用上述公式求解出k和b的值,则可以得到变量的最小二乘线性拟合方程。
损失函数是模型优化的目标,所以又叫目标函数、优化评分函数,在keras中,模型编译的参数loss指定了损失函数的类别,有两种指定方法: model.compile(loss='mean_squared_error...或者 from keras import losses model.compile(loss=losses.mean_squared_error, optimizer='sgd') 你可以传递一个现有的损失函数名...,或者一个TensorFlow/Theano符号函数。...TensorFlow/Theano张量,其shape与y_true相同 实际的优化目标是所有数据点的输出数组的平均值。...,你的目标值应该是分类格式 (即,如果你有10个类,每个样本的目标值应该是一个10维的向量,这个向量除了表示类别的那个索引为1,其他均为0)。
上一篇介绍了回归任务的常用损失函数,这一次介绍分类任务的常用损失函数 深度学习中的损失函数 一.分类任务 与回归任务不同,分类任务是指标签信息是一个离散值,其表示的是样本对应的类别,一般使用...one-hot的中文释义为独热,热 的位置对应于向量中的1,所以容易理解独热的意思是指向量中只有一个位置为1,而其他位置都为0。...1.交叉熵损失 作为信息论基本概念之一,熵被用来衡量一个系统内信息的复杂度。...上熵的均值 output = tf.reduce_mean(output) 2.铰链损失 Hinge loss最初在SVM中提出,通常用于最大化分类间隔,铰链损失专用于二分类问题,核心思想是着重关注尚未分类的样本...,对于已经能正确分类的样本即预测标签已经是正负1的样本不做惩罚,其loss为0,对于介于-1~1的预测标签才计算损失。
p=4124 偏最小二乘回归: 我将围绕结构方程建模(SEM)技术进行一些咨询,以解决独特的业务问题。我们试图识别客户对各种产品的偏好,传统的回归是不够的,因为数据集的高度分量以及变量的多重共线性。...PLS是处理这些有问题的数据集的强大而有效的方法。 主成分回归是我们将要探索的一种选择,但在进行背景研究时,我发现PLS可能是更好的选择。我们将看看PLS回归和PLS路径分析。...我不相信传统的扫描电镜在这一点上是有价值的,因为我们没有良好的感觉或理论来对潜在的结构做出假设。此外,由于数据集中的变量数量众多,我们正在将SEM技术扩展到极限。....,2004年,“初步指南偏最小二乘分析”,Understanding Statistics,3(4),283-297中可以找到关于这个限制的有趣讨论。...T $ y.pred y-预测 $ resid 残差 $ T2 T2经济系数 Q2第二季度交叉验证这个包中有很多,我强烈建议阅读优秀的教程来了解更多信息。
1、经典损失函数:分类问题和回归问题是监督学习的两大种类。这一节将分别介绍分类问题和回归问题中使用到的经典损失函数。分类问题希望解决的是将不同的样本分到事先定义到的经典损失函数。...交叉熵刻画了两个概率分布之间的距离,它是分类问题中试用版比较广的一种损失函数。交叉熵是一个信息论中的概念,它原本是用来估计平均编码长度的。...这样通过tf.clip_by_value函数就可以保证在进行log运算时,不会出现log0这样的错误或者大于1的概率。第二个运算是tf.log函数,这个函数完成了对张量所有元素依次求对数的功能。...这三步计算得到的结果是一个nxm的二维矩阵,其中n为一个batch中样例的数量,m为分类的数量。根据交叉熵的公式,应该将每行中的m的结果得到所有样例的交叉熵。...第一个为选择条件根据,当选择条件根据为True时,tf.where函数会选择第二个参数的值,否则使用第三个参数的值。
总第121篇 前言 在机器学习中,同一个数据集可能训练出多个模型即多个函数(如下图所示,同样的数据集训练出三种不同的函数),那么我们在众多函数中该选择哪个函数呢?...2.平方损失函数 平方损失就是线性回归中的残差平方和,常用在回归模型中,表示预测值(回归值)与实际值之间的距离的平方和。...3.绝对损失函数 绝对损失与平方损失类似,也主要用在回归模型中,表示预测值与实际值之间的距离。...5.对数损失函数 对数损失函数主要用在逻辑回归中,在逻辑回归模型中其实就是预测某个值分别属于正负样本的概率,而且我们希望预测为正样本的概率越高越好。...6.Hinge损失函数 Hinge损失主要用在SVM算法中,具体公式如下: 形状比较像合页,又称合页损失函数 Yi表示样本真实分类,Yi=-1表示负样本,Yi=1表示正样本,Yi~表示预测的点到分离超平面的距离
主成分回归(PCR)的方法 本质上是使用第一个方法的普通最小二乘(OLS)拟合来自预测变量的主成分(PC)(点击文末“阅读原文”获取完整代码数据)。 这带来许多优点: 预测变量的数量实际上没有限制。...让我们开始使用R 癌症/无癌标签(编码为-1 / 1)存储在不同的文件中,因此我们可以将其直接附加到完整的数据集,然后使用公式语法来训练模型。...(_x_轴)训练的模型中获得的平均准确度(_y_轴,%)。...在这种情况下,PLS-DA和PCA-DA表现出最好的性能(准确度为63-95%),并且这两种模型在诊断新血清样品中的癌症方面都表现出色。...这可能是一个有趣的癌症生物标志物。当然,必须进行许多其他测试和模型来提供可靠的诊断工具。 本文选自《R语言中的偏最小二乘回归PLS-DA》。
在机器学习中,损失函数是代价函数的一部分,而代价函数是目标函数的一种类型。在应用中,损失函数通常作为学习准则与优化问题相联系,即通过最小化损失函数求解和评估模型。...Hinge Loss 损失函数 Hinge loss损失函数通常适用于二分类的场景中,可以用来解决间隔最大化的问题,常应用于著名的SVM算法中。...InfoNCE 代表噪声对比估计,是一种用于自我监督学习的对比损失函数,使用分类交叉熵损失来识别一组不相关的噪声样本中的正样本。...InfoNCE Loss是为了将N个样本分到K个类中,而不是NCE Loss的二分类或者交叉熵损失函数的完全分类。...Huber Loss 也是回归中使用的一种损失函数,它对数据中的异常值不如误差平方损失那么敏感。它具有对异常点不敏感和极小可微的特点,使得损失函数具有良好的性质。
p=8890 主成分回归(PCR)的方法 本质上是使用第一个方法的普通最小二乘(OLS)拟合 来自预测变量的主成分(PC)。这带来许多优点: 预测变量的数量实际上没有限制。...让我们开始使用R 癌症/无癌标签(编码为-1 / 1)存储在不同的文件中,因此我们可以将其直接附加到完整的数据集,然后使用公式语法来训练模型。...(x轴)训练的模型中获得的平均准确度(y轴,%)。 ...在这种情况下,PLS-DA和PCA-DA表现出最好的性能(准确度为63-95%),并且这两种模型在诊断新血清样品中的癌症方面都表现出色。...总而言之,我们将使用PLS-DA和PCA-DA中预测的可变重要性(ViP)确定十种最能诊断癌症的蛋白质。 上面的PLS-DA ViP图清楚地将V1184与所有其他蛋白质区分开。
首先,我们要明白最小二乘估计是个什么东西?说的直白一点,当我们确定了一组数的模型之后,然后想通过最小二乘的办法来确定模型的参数。...那我们就想到用这样一种办法,在这些可能的直线中,我们求训练样本的那些点到直线之间的距离的和。...这样,每条直线都可以有一个值,我们把这个距离的和最小的那条直线找出来,我们认为这条直线它最顺眼,因为它照顾到了所有的训练样本点的情绪,不偏不倚。这种方法就是最小二乘法。...公式7 那这组β可不可以让我们的公式4取得最小值呢,我们把公式7带入到公式4中 ? 公式8 公式8中的第三项它是等于0的。所以公式8只剩下了 ?...公式9 又因为X'X是一个正定矩阵,所以公式9中的第二项它>=0,所以 ? 公式10 也就证明了我们的公式7中的β就是要找的那个β。
前言 本篇博客的目的是根据业务目标,为大家提供关于在构建神经网络时,如何根据需求选择合适的最终层激活函数和损失函数的指导和建议。...或 ReLU——这将产生一个大于0的数值。 损失函数 均方误差(MSE)——这计算了预测值与真实值之间的平均平方差。 分类:预测二元结果 例如:预测一笔交易是否为欺诈。...最终激活函数 Sigmoid——这将产生一个介于0和1之间的值,我们可以推断出模型对示例属于该类别的信心程度。 损失函数 二元交叉熵——交叉熵量化了两个概率分布之间的差异。...最终激活函数 Sigmoid——这将产生一个介于0和1之间的值,我们可以推断出模型对于某个实例属于该类别的信心程度。 损失函数 二元交叉熵——交叉熵量化了两个概率分布之间的差异。...总结 以下表格总结了上述信息,以便您能够快速找到适用于您用例的最终层激活函数和损失函数。 参考: 人工智能学习指南
本文分享一篇发表在CIKM2022的关于一种推荐系统中检索模型的可定制损失函数,其将召回模型与Recall指标进行统一建模,并可以根据不同的检索规模进行自适应的优化。...链接:https://arxiv.org/abs/2208.02971 在大规模推荐场景中,针对资源有限的情况下准确地检索出前N个相关的候选者是至关重要的。...为了评估这类检索模型的性能,Recall@N,即在前N个排名中检索到的正样本的频率,其已被广泛使用。...针对以上问题,本文提出了一种可定制的Recall@N优化损失(ROLoss),其是一个可以直接优化Recall@N指标的损失函数,并且可以针对不同的进行定制。...为了进一步改进这个损失函数,其开发了Lambda方法,这是一种基于梯度的方法,允许为这两个角色选择不同的内核1和2,并进一步提高系统性能。
所得值(损失,loss)反映了模型预测的准确性。在训练过程中,反向传播算法等学习算法利用损失函数相对于模型参数的梯度来调整这些参数并最小化损失,有效提高模型在数据集上的性能。...机器学习模型中的学习算法和机制经过优化以最小化预测误差,因此这意味着在计算出由预测误差确定的损失函数值后,学习算法利用该信息来进行权重计算。在下一次训练过程中有效的参数更新会导致较低的预测误差。...在探索损失函数、机器学习算法和神经网络中的学习过程的主题时,会出现经验风险最小化(ERM)的主题。ERM 是一种选择机器学习算法最佳参数的方法,可最大限度地降低经验风险。...在二元交叉熵损失的情况下,有两个不同的类别。但值得注意的是,交叉熵损失的一种变体分类交叉熵适用于多类分类场景。 要理解二元交叉熵损失(有时称为对数损失),讨论以下术语会很有帮助。...这使得损失函数的计算效率成为损失函数选择过程中需要考虑的因素。 考虑因素 描述 学习问题的类型 分类与回归; 二元分类与多类分类。
本文转自知乎,已获作者授权转载,请勿二次转载。 链接:https://zhuanlan.zhihu.com/p/339126633 前言 ?...为了平衡这个跷跷板,一个简单可行的方案就是缩短重物一侧跷跷板的臂长,即减少重物的重量在平衡过程中的权重。...既然正负样本梯度不平衡的问题来自于样本数量的不平衡,那么一种直接有效的办法就是根据不同类别之间样本数量的相对比例来进行调节。...为了避免背景类对 Seesaw Loss 平衡前景类别之间正负样本梯度的干扰,我们的设计解耦了分类器的两个功能,即用一个额外的二分类器分辨前景和背景,而原本的分类器只用来区分前景类别并用 Seesaw...2)Normalized Mask Predication 类似于分类器,我们设计了一种归一化的Mask预测方式,即 ? ? 实验结果 ?
尽管Google的FaceNet利用Triplet Loss效果显著,但作者认为,原来网络中triplet_loss函数存在一定的瑕疵:“每当你的损失小于0时,损失函数就不能提供任何信息”。...Lossless Triplet Loss 一种高效的Siamese网络损失函数 在工作中,我们使用Siamese网络在电信数据上进行one shot学习。...这就是最主要的问题,每当你的损失小于0时,损失函数就不能提供任何信息。这个损失函数的作用如下图所示: ?...其它损失(Other Losses) ---- 另一种熟悉的损失函数(由Yan LeCun和他的团队在论文Dimensionality Reduction by Learning an Invariant...非线性 ---- 我们提出一种非线性的损失函数(N=3): ? ? 引入这种非线性,我们的损失函数变为: ? Β是一个尺度因子,我们建议将它设置为N。使用这种损失函数的结果如下: ?
效果提高了,并且可以使用矩阵的逆获得标准偏差。 标准最小二乘 我们更进一步。我们已经看到想要计算类似 ? 但是实际,这是一个标准的最小二乘问题 ? 这里唯一的问题是权重Δold是未知β的函数。...但是实际上,如果我们继续迭代,我们应该能够解决它:给定β,我们得到了权重,并且有了权重,我们可以使用加权的OLS来获取更新的β。这就是迭代最小二乘的想法。...使用bs()二次样条 当然,我们可以使用R函数执行相同的操作。但是和以前一样,这里的函数有所不同 matplot(x,B,type="l",col=clr6) ?...(样本中的最小值和最大值),也为我们提供了三个中间结。...时间序列数据 R语言中实现广义相加模型GAM和普通最小二乘(OLS)回归 在r语言中使用GAM(广义相加模型)进行电力负荷时间序列分析 R语言用泊松Poisson回归、GAM样条曲线模型预测骑自行车者的数量
一、分类算法中的损失函数 在分类算法中,损失函数通常可以表示成损失项和正则项的和,即有如下的形式: J(w)=∑iL(mi(w))+λR(w) J\left ( \mathbf{w} \right...0-1损失是一个非凸的函数,在求解的过程中,存在很多的不足,通常在实际的使用中将0-1损失函数作为一个标准,选择0-1损失函数的代理函数作为损失函数。...2、Log损失函数 2.1、Log损失 Log损失是0-1损失函数的一种代理函数,Log损失的具体形式如下: log(1+exp(−m)) log\left ( 1+exp\left ( -m \right...3、Hinge损失函数 3.1、Hinge损失 Hinge损失是0-1损失函数的一种代理函数,Hinge损失的具体形式如下: max(0,1−m) max\left ( 0,1-m \right )...4、指数损失 4.1、指数损失 指数损失是0-1损失函数的一种代理函数,指数损失的具体形式如下: exp(−m) exp\left ( -m \right ) 运用指数损失的典型分类器是AdaBoost
概述 在分类算法中,损失函数通常可以表示成损失项和正则项的和,即有如下的形式: J...0-1损失是一个非凸的函数,在求解的过程中,存在很多的不足,通常在实际的使用中将0-1损失函数作为一个标准,选择0-1损失函数的代理函数作为损失函数。 3. Log损失函数 3.1....Log损失 Log损失是0-1损失函数的一种代理函数,Log损失的具体形式如下: l...Hinge损失 Hinge损失是0-1损失函数的一种代理函数,Hinge损失的具体形式如下: m...指数损失 指数损失是0-1损失函数的一种代理函数,指数损失的具体形式如下: e
一、分类算法中的损失函数 image.png 1、0-1损失函数 image.png 2、Log损失函数 2.1、Log损失 image.png 2.2、Logistic回归算法的损失函数 image.png...2.3、两者的等价 image.png 3、Hinge损失函数 3.1、Hinge损失 Hinge损失是0-1损失函数的一种代理函数,Hinge损失的具体形式如下: max(0,1−m) 运用Hinge...3.2、SVM的损失函数 image.png 3.3、两者的等价 image.png 4、指数损失 4.1、指数损失 指数损失是0-1损失函数的一种代理函数,指数损失的具体形式如下: exp(−m) 运用指数损失的典型分类器是...5.2、感知机算法的损失函数 感知机算法只需要对每个样本判断其是否分类正确,只记录分类错误的样本,其损失函数为: image.png 5.3、两者的等价 image.png image.png Hinge...损失对于判定边界附近的点的惩罚力度较高,而感知损失只要样本的类别判定正确即可,而不需要其离判定边界的距离,这样的变化使得其比Hinge损失简单,但是泛化能力没有Hinge损失强。
领取专属 10元无门槛券
手把手带您无忧上云