首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

Hive与HBase相比如何?

ive 和 HBase 都是基于 Hadoop 的大数据处理平台,但它们在存储、查询和性能方面有很大的不同。

Hive 是一个基于 Hadoop 的数据仓库工具,它允许用户使用类似 SQL 的语言进行数据查询和分析。Hive 的主要优势在于它的易用性和可扩展性,用户可以使用 Hive 轻松地对大量数据进行复杂的查询和分析,而无需了解底层的 Hadoop 技术。

HBase 是一个基于 Hadoop 的列式 NoSQL 数据库,它适用于实时数据查询和大量写入操作。与 Hive 不同,HBase 提供了低延迟的数据访问和高可扩展性,但是它的查询语言不如 Hive 简单易用。

在应用场景上,Hive 通常用于数据仓库和数据分析,而 HBase 通常用于实时数据查询和大量写入操作。

推荐的腾讯云相关产品:

这两个产品都是基于 Hadoop 和 HBase 构建的,可以满足不同的大数据处理需求。腾讯云 Hadoop 提供了一个完整的 Hadoop 集群解决方案,包括 HDFS、YARN、Hive 和 Spark 等组件,可以满足用户的数据仓库和数据分析需求。腾讯云 HBase 则提供了一个高性能、高可扩展性的 NoSQL 数据库,可以满足用户的实时数据查询和大量写入操作需求。

页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

  • 大数据实用组件Hudi--实现管理大型分析数据集在HDFS上的存储

    问题导读 1.什么是Hudi? 2.Hudi对HDFS可以实现哪些操作? 3.Hudi与其它组件对比有哪些特点? 前两天我们About云群大佬公司想了解Hudi ,并上线使用。Hudi 或许大家了解的比较少,这里给大家介绍下Hudi这个非常实用和有潜力的组件。 Hudi是在HDFS的基础上,对HDFS的管理和操作。支持在Hadoop上执行upserts/insert/delete操作。这里大家可能觉得比较抽象,那么它到底解决了哪些问题? Hudi解决了我们那些痛点 1.实时获取新增数据 你是否遇到过这样的问题,使用Sqoop获取Mysql日志或则数据,然后将新增数据迁移到Hive或则HDFS。对于新增的数据,有不少公司确实是这么做的,比较高级点的,通过Shell调用Sqoop迁移数据实现自动化,但是这里面有很多的坑和难点,相对来说工作量也不少,那么有没有更好的解决办法那?---Hudi可以解决。Hudi可以实时获取新数据。 2.实时查询、分析 对于HDFS数据,我们要查询数据,是需要使用MapReduce的,我们使用MapReduce查询,这几乎是让我们难以接受的,有没有近实时的方案,有没有更好的解决方案--Hudi。 什么是Hudi Apache Hudi代表Hadoop Upserts anD Incrementals,管理大型分析数据集在HDFS上的存储。Hudi的主要目的是高效减少摄取过程中的数据延迟。由Uber开发并开源,HDFS上的分析数据集通过两种类型的表提供服务:读优化表(Read Optimized Table)和近实时表(Near-Real-Time Table)。 读优化表的主要目的是通过列式存储提供查询性能,而近实时表则提供实时(基于行的存储和列式存储的组合)查询。 Hudi是一个开源Spark库(基于Spark2.x),用于在Hadoop上执行诸如更新,插入和删除之类的操作。它还允许用户仅摄取更改的数据,从而提高查询效率。它可以像任何作业一样进一步水平扩展,并将数据集直接存储在HDFS上。 Hudi的作用 上面还是比较抽象的话,接着我们来看下图,更形象的来了解Hudi

    03

    Ambari + HDP 整体介绍

    Ambari 是 hortonworks推出的管理监控Hadoop集群的Web工具,此处的Hadoop集群不单单指Hadoop集群,而是泛指hadoop 整个生态,包括Hdfs,yarn,Spark,Hive,Hbase,Zookeeper,druid等等,管理指的是可以通过Ambari对整个集群进行动态管理,包括集群的部署,修改,删除,扩展等,监控指Ambari实时监控集群的运行状况,包括运行内存,剩余内存,CPU使用率,节点故障等。所以通过Ambari可以简化对集群的管理和监控,让开发者更多的聚焦与业务逻辑。     Ambari + HDP介绍:         Ambari:WEB应用程序,后台为Ambari Server,负责与HDP部署的集群工作节点进行通讯,集群控制节点包括Hdfs,Spark,Zk,Hive,Hbase等等。         HDP:HDP包中包含了很多常用的工具,比如Hadoop,Hive,Hbase,Spark等         HDP-Util:包含了公共包,比如ZK等一些公共组件。     老的集群部署方式:         1. 集群配置(免密登陆,静态IP,防火墙)         2. JDK,MySql 部署 (Hive相关表结构管理,如果没有用到Hive,无需安装)         3. Hadoop Hdfs 部署(修改配置) (分布式文件存储)         4. Hadoop Yarn 部署(修改配置) (MapReduce 任务调度)         5. (可选) Zookeeper部署,需要修改NameNode 和 ResourceManager 的配置文件         6. Hive 部署 (数据仓库,对Hdfs上保存的数据进行映射管理)         7. HBase 部署 (NoSQL数据库,进行数据存储)         8. (可选) Flume,Sqoop 部署(主要用于数据采集,数据迁移)         9. Spark 部署 (计算框架部署)         10. 后面还需要部署 监控框架等等,         部署准备:MySql,JDK,Hadoop,Hive,HBase,Zookeeper,Spark,Flume,Sqoop等         部署缺点:以上全部部署都是通过命令行来部署,麻烦复杂,容易出错,动态扩展较难,无集群监控    部署优点:整体可控,对集群内部运行逻辑比较清楚,只部署需要的服务,所以对集群要求(内存,CPU及硬盘) 可以不是很高     Ambari 集群部署方式:         1. 集群配置(免密登陆,静态IP,防火墙)         2. JDK,MySql 部署 (需要配置Ambari,Hive,Hbase等多张表)         3. 部署Ambari 服务         4. 通过Ambari Web工具 部署Hdfs,Spark,Hive,Zk,Hbase,Flume等,想怎么部署就怎么部署,鼠标选择服务和需要部署的节点即可         5. 通过Ambari Web工具进行集群监控,并且对警告及错误进行处理         部署准备:MySql,JDK,Ambari,HDP,HDP-Util,和上面老的部署方式相比,是不是少了很多    部署注意事项:通过Ambari部署集群对集群节点机器要求比较高,因为有好多关于AmbariServer服务会部署在同一个管理节点上,同时其他集群节点也会同时部署很多其他服务,这对节点的配置(CPU,内存,硬盘)要求比较高,可能运行不起来。         部署优点:部署简单,一键部署,方便监控,方便扩展,多集群同时管理     Ambari 部署步骤:         1. 单节点:Ntp,java,selinux,hosts,hostname,ip         2. 克隆节点,修改ip及hostname         3. 安装mysql,配置免密登陆         4. 安装httpd,配置本地ambari+HDP 的yum源         5. Ambari Server安装及初始化         6. Ambari Server 通过向导安装集群         7. Ambari 使用介绍         8. Hdfs HA的高可用         9. 接下来就可以根据我们的需求使用集群了,这部分后面会有专门章节针对Hadoop MR 和Spark进行详细解读。

    01

    HBase Bulkload 实践探讨

    HBase 是一个面向列,schemaless,高吞吐,高可靠可水平扩展的 NoSQL 数据库,用户可以通过 HBase client 提供的 put get 等 api 实现在数据的实时读写。在过去的几年里,HBase 有了长足的发展,它在越来越多的公司里扮演者越来越重要的角色。同样的,在有赞 HBase 承担了在线存储的职责,服务了有赞用户,商品详情,订单详情等核心业务。HBase 擅长于海量数据的实时读取,但软件世界没有银弹,原生 HBase 没有二级索引,复杂查询场景支持的不好。同时因为 split,磁盘,网络抖动,Java GC 等多方面的因素会影响其 RT 表现,所以通常我们在使用HBase的同时也会使用其他的存储中间件,比如 ES,Reids,Mysql 等等。避免 HBase 成为信息孤岛,我们需要数据导入导出的工具在这些中间件之间做数据迁移,而最常用的莫过于阿里开源的 DataX。Datax从 其他数据源迁移数据到 HBase 实际上是走的 HBase 原生 api 接口,在少量数据的情况下没有问题,但当我们需要从 Hive 里,或者其他异构存储里批量导入几亿,几十亿的数据,那么用 DataX 这里就显得不那么适合,因为走原生接口为了避免影响生产集群的稳定性一定要做好限流,那么海量数据的迁移就很很慢,同时数据的持续写入会因为 flush,compaction 等机制占用较多的系统资源。为了解决批量导入的场景,Bulkload 应运而生。

    03
    领券