; import org.apache.hadoop.mapred.FileInputFormat; import org.apache.hadoop.mapred.FileOutputFormat;...import org.apache.hadoop.mapred.JobClient; import org.apache.hadoop.mapred.JobConf; import org.apache.hadoop.mapred.MapReduceBase...; import org.apache.hadoop.mapred.Mapper; import org.apache.hadoop.mapred.OutputCollector; import org.apache.hadoop.mapred.Reducer...; import org.apache.hadoop.mapred.Reporter; import org.apache.hadoop.mapred.TextInputFormat; import org.apache.hadoop.mapred.TextOutputFormat...org.apache.hadoop.mapreduce.Job$10.run(Job.java:1296) at org.apache.hadoop.mapreduce.Job$10.run(
; import org.apache.hadoop.mapred.JobConf; import org.apache.hadoop.mapred.Mapper; import org.apache.hadoop.mapred.OutputCollector...; import org.apache.hadoop.io.Text; import org.apache.hadoop.mapred.JobConf; import org.apache.hadoop.mapred.OutputCollector...jobConf) { } } 4、MapReduce支持 读orc的mapper: package is.orc; import org.apache.hadoop.io.NullWritable...; import org.apache.hadoop.io.Text; import org.apache.orc.mapred.OrcStruct; import org.apache.hadoop.mapreduce.Mapper...; import org.apache.hadoop.mapreduce.Reducer; import org.apache.orc.TypeDescription; import org.apache.orc.mapred.OrcStruct
; import org.apache.hadoop.mapred.FileInputFormat; import org.apache.hadoop.mapred.FileOutputFormat;...import org.apache.hadoop.mapred.JobClient; import org.apache.hadoop.mapred.JobConf; import org.apache.hadoop.mapred.MapReduceBase...; import org.apache.hadoop.mapred.Mapper; import org.apache.hadoop.mapred.OutputCollector; import org.apache.hadoop.mapred.Reducer...; import org.apache.hadoop.mapred.Reporter; import org.apache.hadoop.mapred.TextInputFormat; import org.apache.hadoop.mapred.TextOutputFormat...; import org.apache.hadoop.mapreduce.Mapper.Context; import org.apache.hadoop.util.GenericOptionsParser
/scr新建一个org.apache.hadoop.fs包,把FileUtil.java文件拷到这个包的下面(在eclipse里直接粘贴就可以) 再次编译WordCount.java程序没有报错 import...; import org.apache.hadoop.io.IntWritable; import org.apache.hadoop.io.Text; import org.apache.hadoop.mapred.FileInputFormat...; importorg.apache.hadoop.mapred.FileOutputFormat; importorg.apache.hadoop.mapred.JobClient; importorg.apache.hadoop.mapred.JobConf...; import org.apache.hadoop.mapred.MapReduceBase; importorg.apache.hadoop.mapred.Mapper; importorg.apache.hadoop.mapred.OutputCollector...如hadoop安装在了linux服务器的licz用户下,我必需在windows的上的licz用户下使用eclipse开发程序。 这样,我们就可以在eclipse上开发mapreduce程序了。
; import org.apache.hadoop.io.LongWritable; import org.apache.hadoop.io.Text; import org.apache.hadoop.mapred...com.hash.test.hadoop.mapred; import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.conf.Configured...; import org.apache.hadoop.io.LongWritable; import org.apache.hadoop.io.Text; import org.apache.hadoop.mapreduce.Job...; import org.apache.hadoop.mapreduce.Mapper; import org.apache.hadoop.mapreduce.Reducer; import org.apache.hadoop.mapreduce.lib.input.FileInputFormat...; import org.apache.hadoop.mapreduce.lib.input.TextInputFormat; import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat
在学习了 MapReduce 的使用之后,我们已经可以处理 Word Count 这类统计和检索任务,但是客观上 MapReduce 可以做的事情还有很多。...注意:MapReduce 依赖 Hadoop 的库,但由于本教程使用的 Hadoop 运行环境是 Docker 容器,难以部署开发环境,所以真实的开发工作(包含调试)将需要一个运行 Hadoop 的计算机...MyWordCount.java 文件代码 /** * 引用声明 * 本程序引用自 http://hadoop.apache.org/docs/r1.0.4/cn/mapred_tutorial.html...; import org.apache.hadoop.fs.Path ; import org.apache.hadoop.io.* ; import org.apache.hadoop.mapred...进入目录: cd /home/hadoop/MyWordCount 编译: javac -classpath ${HADOOP_HOME}/share/hadoop/mapreduce/hadoop-mapreduce-client-core
import org.apache.hadoop.hbase.util.Bytes import org.apache.hadoop.hbase._ import org.apache.hadoop.mapred.JobConf...import org.apache.hadoop.mapreduce.Job import org.apache.spark....import org.apache.hadoop.hbase.util.Bytes import org.apache.hadoop.mapred.JobConf import org.apache.spark...类,另外导包的时候新版的相关jar包在org.apache.hadoop.mapreduce下,而旧版的相关jar包在org.apache.hadoop.mapred下 3....import org.apache.hadoop.mapreduce.Job import org.apache.spark.
需要注意的是,在hadoop 0.21.x之前和之后的使用方式是不一样的: hadoop 0.21 之前的API 中有 org.apache.hadoop.mapred.lib.MultipleOutputFormat...和 org.apache.hadoop.mapred.lib.MultipleOutputs,而到了 0.21 之后 的API为 org.apache.hadoop.mapreduce.lib.output.MultipleOutputs...; import org.apache.hadoop.io.Text; import org.apache.hadoop.mapred.FileInputFormat; import org.apache.hadoop.mapred.FileOutputFormat...; import org.apache.hadoop.mapred.JobClient; import org.apache.hadoop.mapred.JobConf; import org.apache.hadoop.mapred.MapReduceBase...; import org.apache.hadoop.mapred.Mapper; import org.apache.hadoop.mapred.OutputCollector; import org.apache.hadoop.mapred.Reporter
在第一次使用oozie来管理mapreduce工作流时,出现了如下异常: java.io.IOException: Type mismatch in key from map: expected org.apache.Hadoop.io.LongWritable..., recieved org.apache.hadoop.io.Text at org.apache.hadoop.mapred.MapTask$MapOutputBuffer.collect(MapTask.java...:872) at org.apache.hadoop.mapred.MapTask$OldOutputCollector.collect(MapTask.java:499)以上错误,相信是大家在刚开始使用...org.apache.hadoop.io.Text mapred.output.value.class... org.apache.hadoop.io.IntWritable 注,要在lib目录下把hadoop-core-0.20.2
至少在我的 0.20.203 中的 org.apache.hadoop.mapreduce.lib 下是没见到 db 包,所以本文也是以老版的 API 来为例说明的。...; import org.apache.hadoop.io.Writable; import org.apache.hadoop.mapred.JobClient; import org.apache.hadoop.mapred.JobConf...; import org.apache.hadoop.mapred.MapReduceBase; import org.apache.hadoop.mapred.Mapper; import org.apache.hadoop.mapred.OutputCollector...; import org.apache.hadoop.mapred.Reducer; import org.apache.hadoop.mapred.Reporter; import org.apache.hadoop.mapred.lib.IdentityReducer...; import org.apache.hadoop.mapred.lib.db.DBOutputFormat; import org.apache.hadoop.mapred.lib.db.DBWritable
{Put, Result} import org.apache.hadoop.hbase....{CellUtil, HBaseConfiguration} import org.apache.hadoop.hbase.io.ImmutableBytesWritable import org.apache.hadoop.hbase.mapred.TableOutputFormat...import org.apache.hadoop.hbase.mapreduce.TableInputFormat import org.apache.hadoop.hbase.util.Bytes...import org.apache.hadoop.mapred.JobConf import org.apache.spark....{ConnectionFactory, HTable, Put} import org.apache.hadoop.hbase.util.Bytes import org.apache.spark.
at org.apache.hadoop.mapred.LocalDistributedCacheManager.setup(LocalDistributedCacheManager.java:...125) at org.apache.hadoop.mapred.LocalJobRunner$Job....(LocalJobRunner.java:163) at org.apache.hadoop.mapred.LocalJobRunner.submitJob(LocalJobRunner.java...org.apache.hadoop.mapreduce.Job$10.run(Job.java:1290) at org.apache.hadoop.mapreduce.Job$10.run(...org.apache.hadoop.mapreduce.Job.waitForCompletion(Job.java:1308) at com.hash.test.hadoop.mapred.wordcount.WordCount.run
org.apache.hadoop.mapred.TaskTracker.startNewTask(TaskTracker.java:2727) at org.apache.hadoop.mapred.TaskTracker...at org.apache.hadoop.util.Shell.runCommand(Shell.java:261) at org.apache.hadoop.util.Shell.run...日志,可以获取commandArray的具体信息: 2014-03-26 19:49:02,489 DEBUG org.apache.hadoop.mapred.LinuxTaskController:.../mapred, -Dhadoop.root.logger=INFO,console, org.apache.hadoop.mapred.JobLocalizer, hdfs, job_201403261945.../jira/browse/MAPREDUCE-4397 默认情况下,目录取值的方法如下: #ifndef HADOOP_CONF_DIR //如果编译时不指定HADOOP_CONF_DIR的值,没调用
:912) at org.apache.hadoop.mapreduce.Job.submit(Job.java:500) at org.apache.hadoop.mapreduce.Job.waitForCompletion...org.apache.hadoop.mapreduce.JobSubmissionFiles.getStagingDir(JobSubmissionFiles.java:103) at org.apache.hadoop.mapred.JobClient...:912) at org.apache.hadoop.mapreduce.Job.submit(Job.java:500) at org.apache.hadoop.mapreduce.Job.waitForCompletion...; import org.apache.hadoop.io.Text; import org.apache.hadoop.mapreduce.Job; import org.apache.hadoop.mapreduce.Mapper...; import org.apache.hadoop.mapreduce.Reducer; import org.apache.hadoop.mapreduce.lib.input.FileInputFormat
import org.apache.hadoop.io.Text; import org.apache.hadoop.io.WritableComparable; import org.apache.hadoop.mapred...具体代码如下: package is.orc; import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.mapred....*; import org.apache.hadoop.mapred.lib.CombineFileInputFormat; import org.apache.hadoop.mapred.lib.CombineFileRecordReader...; import org.apache.hadoop.mapred.lib.CombineFileRecordReaderWrapper; import org.apache.hadoop.mapred.lib.CombineFileSplit...org.apache.hadoop.io.Text, org.apache.hadoop.io.Text> getRecordReader(InputSplit split, JobConf conf
帮一个朋友写个样例,顺便练手啦~一直在做平台的各种事,但是代码后续还要精进啊。。。...1 import java.util.Date 2 3 import org.apache.hadoop.hbase.HBaseConfiguration 4 import org.apache.hadoop.hbase.client...{Put, Scan, Result} 5 import org.apache.hadoop.hbase.io.ImmutableBytesWritable 6 import org.apache.hadoop.hbase.mapred.TableOutputFormat...7 import org.apache.hadoop.hbase.mapreduce.TableInputFormat 8 import org.apache.hadoop.hbase.util.Bytes...9 import org.apache.hadoop.mapred.JobConf 10 import org.apache.log4j.
>-> reduce ->(output) 核心概念 Spilt:交由MapReduce作业来处理的数据块,是MapReduce中最小的计算单元 HDFS:blocksize 是HDFS中最小的存储单元...128M 默认情况下:他们两是一一对应的,当然我们也可以手工设置他们之间的关系 InputFormat: 将我们的输入数据进行分片(Spilt): InputSpilt[] getSpilts(JobConf...使用IDEA+Maven开发mc: 1) 开发 2)编译: mvn clean package -DskipTests 3)上传到服务器 docker cp target/hadoop-train-1.0...cause: org.apache.hadoop.mapred.FileAlreadyExistsException: Output directory hdfs://hadoop000:8020/output.../wc already exists Exception in thread "main" org.apache.hadoop.mapred.FileAlreadyExistsException: Output
连接步骤 首先我们从github源码下载源码进行编译。推荐直接从http://search.maven.org自己下载编译好的jar包。...HADOOP_CLASSPATH中; 传到HDFS上,在MapReduce代码中通过addClassPath加入依赖库目录。...我应用的版本分别是mongo-hadoop-core-2.0.2.jar和mongo-java-driver-3.4.2.jar 然后就可以开始写MapReduce了。...extends org.apache.hadoop.mapred.Mapper> mapper = MapredMongoConfigUtil.getMapper(conf); if...extends org.apache.hadoop.mapred.Reducer> combiner = MapredMongoConfigUtil.getCombiner(conf);
; import org.apache.hadoop.mapreduce.Job; import org.apache.hadoop.mapreduce.Mapper; import org.apache.hadoop.mapreduce.Reducer...; import org.apache.hadoop.mapreduce.lib.input.FileInputFormat; import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat...4,运行报错(2): Exception in thread "main" java.lang.NoClassDefFoundError: org/apache/hadoop/util/PlatformName...:348) at org.apache.hadoop.mapreduce.Job$10.run(Job.java:1285) at org.apache.hadoop.mapreduce.Job...org.apache.hadoop.mapreduce.Job$10.run(Job.java:1285) at org.apache.hadoop.mapreduce.Job$10.run(
人们对于Mapreduce程序刚開始时都觉得仅仅须要一个reduce就够了。 毕竟,在你处理数据之前一个reducer已经把数据都分好类了,有谁不喜欢分好类的数据呢。...这是就Partitioner的工作了。 在默认情况下。hadoop通过比較key的hash值来分配,默认使用HashPartitioner。...import org.apache.hadoop.io.Writable; import org.apache.hadoop.mapred.JobConf; import org.apache.hadoop.mapred.Partitioner...class EdgePartitioner implements Partitioner{ @Override public void configure(JobConf...一个MapReduce程序必须把mapper的输出分配到多个reducer上。这个过程叫做shuffling。由于一个mapper的输出结果有可能被分配到集群中的多个节点中去。
领取专属 10元无门槛券
手把手带您无忧上云