在这篇文章中,我将向您展示如何使用Python构建自己的答案查找系统。基本上,这种自动化可以从图片中找到多项选择题的答案。
API是一套用于构建应用软件程序的规范,协议和工具。在本文中,我们从2017年的清单中删除了停用的API,并利用新元素对其进行了更新。并且,所有的API被归类到以下几个领域:
对于做工程项目和搞科研的人来说,有现成的模块或工具使用是一件多么美妙的事情啊,无需访问源码或理解内部工作机制的细节即可完成相应的任务。常用的方法是调用一些API,即一些预先定义的函数,目的是提供应用程序与开发人员基于某软件或硬件得以访问一组例程的能力。本文总结对于机器学习行业者有用的50多个API,主要涉及的领域如下:
机器之心原创 参与:QW、李亚洲 一年一度的谷歌开发者大会 Google I/O 昨日在山景城开幕,在首日的 Keynote 中,谷歌宣布了一系列新的硬件、应用、基础研究等。而在下午面向开发者的 se
大数据文摘作品 编译:大茜、Shan LIU、云舟 还在为找不到机器学习的API而烦恼吗?本篇文章将介绍一个包含50+关于人脸和图像识别,文本分析,NLP,情感分析,语言翻译,机器学习和预测的API列表,快快收藏吧~ API是一套用于构建应用软件程序的规范,协议和工具。在本文中,我们从2017年的清单中删除了停用的API,并利用新元素对其进行了更新。并且,所有的API被归类到以下几个领域: 人脸和图像识别 文本分析,NLP,情感分析 语言翻译 机器学习和预测 在每组应用中,列表中的元素按字母顺序排列。相
纸质老照片记录下了当时的珍贵时刻,其中的历史意义也更为重要,但纸质极容易损坏,人类该怎么保存它们,让它们恒久远永流传?
近日,一名叫Matt Fraser的小哥用Cloud AutoML制作了一个分类器,能识别分类澳大利亚的各种毒蜘蛛。
按要求转自:FreeBuf.COM 编译:Alpha_h4ck 近期,一群来自华盛顿大学网络安全实验室(NSL)的计算机专家发现,恶意攻击者可以欺骗Google的CloudVision API,这将导致API对用户提交的图片进行错误地分类。 近些年来,基于AI的图片分类系统变得越来越热门了,而这项研究针对的就是这种图片分类系统。现在,很多在线服务都会采用这种系统来捕捉或屏蔽某些特殊类型的图片,例如那些具有暴力性质或色情性质的图片,而基于AI的图片分类系统可以阻止用户提交并发布违禁图片。 虽然这种分类系统使
近期,一群来自华盛顿大学网络安全实验室(NSL)的计算机专家发现,恶意攻击者可以欺骗Google的CloudVision API,这将导致API对用户提交的图片进行错误地分类。 近些年来,基于AI的图片分类系统变得越来越热门了,而这项研究针对的就是这种图片分类系统。现在,很多在线服务都会采用这种系统来捕捉或屏蔽某些特殊类型的图片,例如那些具有暴力性质或色情性质的图片,而基于AI的图片分类系统可以阻止用户提交并发布违禁图片。 虽然这种分类系统使用了高度复杂的机器学习算法,但是研究人员表示,他们发现了一种非
随着基于人工智能与机器学习的应用如雨后春笋般不断涌现,我们也看到有很多提供类似功能的 API 悄悄登上了舞台。 API 是用于构建软件应用的程序、协议以及工具的组合;本文是对2015 中这个列表的修正与完善,移除了部分被废弃的 API ;我们也添加了最近由 IBM、Google、Microsoft 这些大厂发布的 API 。所有的 API 可以根据应用场景进行分组: 人脸与图片识别。 文本分析,自然语言处理以及情感分析。 语言翻译。 预测以及其他的机器学习算法。 在具体的每个分组内,我们根据首字母顺序排序;
翻译 | Drei 编辑 | Just 出品 | 人工智能头条(公众号ID:AI_Thinker) API 是一套用于构建软件程序的协议和工具。对于应用开发者而言,有了开放的 API,就可以直接调用其他公司做好的功能为我所用,这在很大程度上提升了工作效率。 本文整理了以下四大类共 50 种 API,为你节省了寻找资源的时间。总之,你所需要的可能基本都在下面了: 人脸和图像识别(Face Image Recognition) 文本分析,自然语言处理,情感分析(Text Analysis, NLP, Senti
API 是一套用于构建软件程序的协议和工具。对于应用开发者而言,有了开放的 API,就可以直接调用其他公司做好的功能为我所用,这在很大程度上提升了工作效率。
即 Google I/O 2023 之后,又迎来了 Apple 举办的当世最令人瞩目的另一大科技大会:WDC2023。这两场大会无疑都会为大家带来近一年内最热门最前沿的技术,而作为 Web 开发者我们也应该紧跟时代的潮流,及时了解技术的进步,从这些大会上我们也能学习到很多有用的内容。
API 是一套用于构建软件程序的协议和工具。对于应用开发者而言,有了开放的 API,就可以直接调用其他公司做好的功能为我所用,这在很大程度上提升了工作效率。本文整理了以下四大类共 50 种 API,为你节省了寻找资源的时间。
本节将说明 API 在软件开发中的一般用法,并说明如何使用不同的最新深度学习 API 来构建智能 Web 应用。 我们将涵盖自然语言处理(NLP)和计算机视觉等领域。
人工智能正在成为新一代技术变革的基础技术,但从头开始为自己的应用和业务开发人工智能程序既成本高昂,且往往很难达到自己想要的性能表现,但好在我们有大量现成可用的 API 可以使用。开发者可以通过这些 API 将其它公司提供的智能识别、媒体监测和定向广告等人工智能服务集成到自己的产品中。机器之心在 2015 年底就曾经编译过一篇介绍当前优质人工智能和机器学习 API 的文章《技术 | 50 个常用的人工智能和机器学习 API》,列举了 50 个较为常用的涉及到机器学习、推理预测、文本分析及归类、人脸识别、语言翻译等多个方面的 API。一年多过去了,好用的 API 也出现了一些新旧更迭,现在是时候对这篇文章进行更新了。
本篇基于 2017 年的推荐清单做了一些改进——去除了一些不再进行维护的 API,并且更新了一些新的 API。主要覆盖如下方向:
作者介绍: 黄明,WWDC 2017大会的小时光茶社特派员 ,腾讯SNG增值产品部内容中心iOS组leader,主要负责手Q个性化业务、手Q WebView等项目。作为终端开发也喜欢学习些图像图形方向的知识,同好者可以技术交流。生活中,休闲比较喜欢看书,娱乐比较喜欢电竞。 今天内容依然是Machine Learning(机器学习),让我们大家持续兴奋。 1. NLP(Nature Language Processing) 还在为终端分词而苦恼吗?没有好的分词算法?分词词库太大?今天参加了我昨日提到的N
图像识别市场估计将从2016年的159.5亿美元增长到2021年的389.2亿美元,在2016年至2021年之间的复合年增长率为19.5%。机器学习和高带宽数据服务的使用进步推动了这项技术的发展。 。电子商务,汽车,医疗保健和游戏等不同领域的公司正在迅速采用图像识别。根据MarketsandMarkets的报告,图像识别市场分为硬件,软件和服务。以智能手机和扫描仪为主的硬件部分可以在图像识别市场的增长中发挥巨大作用。越来越需要具有创新技术(例如监控摄像头和面部识别)的安全应用程序和产品。
哈喽各位《code 秘密花园》的订阅者们,一年一度的年更系列又来了。关注我的老粉都知道,每到年末我会对前端生态在这一年的重大变化做一次总结,之前的总结:
作者 | Lu Wang、Chen Cen、Arun Venkatesan 和 Khanh LeViet
在本章中,我们将探索移动设备上深度学习的新兴途径。 我们将简要讨论机器学习和深度学习的基本概念,并将介绍可用于将深度学习与 Android 和 iOS 集成的各种选项。 本章还介绍了使用本机和基于云的学习方法进行深度学习项目的实现。
后台有很多人问如何入门CV,这篇是旧文重发,文章很长,翻译自某外文博客,时间有点久,但道理是相通的,非常值得一读! 这篇文章从一个刚刚开始计算机视觉研究的初学者的角度,详细探讨了这个领域的文献、专家学者、研究组、博客,并重点说明了如何开始研究,如何选择方向,如何看论文、实现代码、调试代码等,并详细说明了研究计算机视觉应该如何学习机器学习等。是初入该领域的博士、学者、欲深入研究的开发者的非常值得详细考察和收藏的参考。 顶级会议和期刊 第一梯队顶级会议: CVPR, ECCV, ICCV, NIPS, IJCA
该清单按照字母排序,对 API 的概述是基于对应官网所提供的信息整合而成。要是大家发现该清单中错过了某些当前流行的 API,可以在评论中告知。
在通往人工智能的路上,Google一直在不停地买买买。 谷歌在2011年成立AI部门,目前已经有100 多个团队用上了机器学习技术,包括Google搜索、Google Now、Gmail等, 并往其开源Android手机系统中注入大量机器学习功能(如用卷积神经网络开发Android手机语音识别系统) 。谷歌目前产品和服务依靠主要AI技术驱动,如谷歌使用深度学习技术改善搜索引擎、识别Android手机指令、鉴别其Google+社交网络的图像。 2015年8月,谷歌宣布架构重组,设立母公司Alphabet,谷歌
翻译 | AI 科技大本营(rgznai100) 参与 | 刘畅、林椿眄 编辑 | 周翔、Donna 本周三,Google 发布了最新的 Cloud AutoML 技术,该技术能使企业开发者们通过 Google Cloud 平台自动创建机器学习模型。谷歌首先将发布 AutoML Vision,即用于建立机器视觉模型的工具,随后将陆续推出用于机器翻译和自然语言处理等的工具。 Cloud AutoML 将是开发者的利器,即便你不懂机器学习,也能训练出一个定制化的机器学习模型。具体来说,开发者只需要上传一组
最近在微软Learn平台学习Azure认知服务相关的内容,看到了一个有关“使用自定义视觉对濒危鸟类进行分类”的专题,该专题的主要内容就是使用 Azure Custom Vision创建一个模型来标识鸟类物种。学习完以后,觉得内容挺有意思,英语不好的同志不要觉得有压力,这个专题学习模块的所有内容已经汉化。但是有个问题就是,学习完以后,你会发现,该项目是在PC上使用现有的照片来进行识别,这样的操作并不是十分方便。目前,随着物联网设备的普及,使用树莓派作为IoT终端、结合摄像头捕捉实时图像,再与Azure Custom Vision进行交互,获得识别结果,这样的方式或许部署起来更加轻巧方便。好的,下面我们就一起来把这个想法实现出来,我整体测算了一下,应该能够在1个小时内搞定。另外,本文使用微软Learn平台的沙盒作为资源,所有的Azure资源使用都是免费的。
日前,kdnuggets 上的一篇文章对比了三大公司(谷歌、微软和亚马逊)提供的机器学习服务平台,对于想要启动机器学习项目的公司或是数据科学新手来说,提供了非常多的指导和建议。 AI 研习社将原文编译整理如下: 对于大多数企业来说,机器学习就像航空航天一样遥远,听起来既昂贵,还需要高科技人才。从某种角度来说,如果你想建立一个像 Netflix 一样好的推荐系统,那确实是昂贵且困难。但是,目前这个复杂的领域有一个趋势:一切皆服务(everything-as-a-service)——无需太多投资,即可快速启动机
选自Google Blog 作者:李飞飞、李佳 机器之心编译 参与:路雪、刘晓坤 李飞飞一直倡导AI民主化,今日谷歌云发布Cloud AutoML,希望帮助ML/AI专业知识和能力有限的企业也能够使用AI技术构建定制化AI模型。目前已有一万多家企业使用Cloud AutoML。 谷歌发布 Cloud AutoML,旨在帮助更多公司构建高质量定制化模型。李飞飞和李佳在相关博客中称:「Cloud AutoML 将帮助 AI 专家更加高产,不断拓展 AI 的新领域,帮助经验不足的工程师构建梦寐以求的强大 AI 系
JSubFinder是一款基于Golang开发的敏感信息搜索工具,根据给定的URL地址,广大研究人员可以轻松使用JSubFinder来寻找目标网站页面&JavaScript中隐藏的子域名和敏感信息。
本周三,Google 发布了最新的 Cloud AutoML 技术,该技术能使企业开发者们通过 Google Cloud 平台自动创建机器学习模型。谷歌首先将发布 AutoML Vision,即用于建立机器视觉模型的工具,随后将陆续推出用于机器翻译和自然语言处理等的工具。 Cloud AutoML 将是开发者的利器,即便你不懂机器学习,也能训练出一个定制化的机器学习模型。具体来说,开发者只需要上传一组图片,然后导入标签或者通过 App 创建,随后 Cloud AutoML 就会自动生成一个定制化的机器学
今天继续上期的《人脸关键点检测》,精彩的现在才真正的开始,后文会陆续讲解现在流行的技术,有兴趣的我们一起来学习!
翻译 | Shawn 过去几年机器学习的发展使得计算机视觉有了快速的进步,系统能够自动描述图片,对共享的图片创造自然语言回应。其中大部分的进展都可归因于 ImageNet 、COCO(监督学习)以及 YFCC100M(无监督学习数据集) 这样的数据集的公开使用。 2016年,谷歌发布 Open Images,这是一个包含约 900万 张图像 URL 的数据集,里面的图片通过标签注释被分为 6000 多类。近日,谷歌又发布了 Open Images 最新的 V3 版,相比之前的版本,这次更新有哪些改变呢?
上周,谷歌公布了该公司有史以来体量最大、功能最强的 AI 模型 Gemini,这也是谷歌在推动 AI 实际落地过程中的重要一步。Gemini 模型共分为三个版本:Ultra 版、Pro 版与 Nano 版。谷歌已经开始在自家产品组合中引入 Gemini:从 Pixel 8 Pro 开始,Gemni Nano 将正式登陆 Android 系统;而经过专门微调的 Gemini Pro 则即将现身 Google Bard。
本文将介绍计算机视觉相关的经典书籍,顶级期刊/会议,在线学习课程,常用开源库和安利小工具等。 简介 计算机视觉(Computer Vision) 计算机视觉是一个跨学科领域, 涉及如何使计算机能够获得从数字图像或视频的高层次理解。从工程学的角度来看, 它寻求自动化人类视觉系统可以做的任务。 Reference:https://en.wikipedia.org/wiki/Computer_vision 计算视觉相关条目 Outline of computer vision Reference:https:
最近,我一直在研究网页抓取技术。鉴于人工智能领域的快速发展,我尝试构建一个 “通用” 的网页抓取工具,它可以在网页上迭代遍历,直到找到需要抓取的信息。这个项目目前还在开发中,这篇文章我将分享一下该项目目前的进展。
谷歌为其机器学习框架TensorFlow定制的芯片——TPU正在向边缘设备发展。在旧金山举行的Cloud Next会议上,谷歌宣布推出Edge TPU和Cloud IoT Edge。
计算机视觉在过去的一年中迅速发展,涵盖了从基础设施支持到跨行业应用的全方位领域,同时也在算法研究和AI生成艺术领域取得了突破性进展。虽然无法在一篇博文中详细介绍所有这些发展,但有几个最大和最令人兴奋的进展值得回顾。
【新智元导读】如今,网络中每天会产生海量的图像文件,而对于这些图片进行安全性鉴定是非常有必要的。很多公司都会使用图像鉴定API对裸露或违法照片进行自动过滤和修改。本文便实现并比较了谷歌、微软、亚马逊等公司的鉴定API能力。
来源:blog.google 编译:弗格森 【新智元导读】 谷歌为树莓派制作了一个具有设备上的神经网络加速功能的套件,在没有云连接的情况下提供强大的计算机视觉能力。根据The Verge的报道,该套件售价为44.99美元。 今年早些时候,旨在帮助创客(maker)体验和了解人工智能AIY项目启动。第一个产品AIY语音工具包大获成功,人们创造了许多漂亮的的项目,展示了创客项目中开发语音识别的可能性。 今天,AIY项目发布第二个产品——Vision Kit。这是一个具有设备上的神经网络加速功能的项目,在没有云连
整合文本、图像、音频和视频等多种方式对于创建复杂且引人入胜的 AI 应用程序变得越来越重要。LangChain 和 Google 的 Gemini API 被证明是开发人员的完美搭档,提供了一套强大的工具包来帮助构建高级多模态 AI 解决方案。
2020 年,移动设备上的机器学习将不再是什么热门的新事物。在移动应用中添加某种智能已经成为一种标准做法。
欧洲计算机视觉会议(ECCV)是由欧洲计算机视觉协会(ECVA)主办的双年度顶级计算机视觉和机器学习研究会议。该会议汇集了这一领域的科学和工业界的专业人士。每两年举办一次,今年的会议定于 9 月 29日(星期日)至 10 月 4 日(星期五)在米兰 MiCo 举行。
WebDriver可以像用户一样驱动原生浏览器,无论是在本地服务器还是在使用Selenium服务器的远程机器上,都标志着浏览器自动化的一个飞跃。
GPT-4 Turbo with Vision 是 OpenAI 开发的一个大型多模态模型 (LMM),可以分析图像,并为有关图像的问题提供文本回应。 它结合了自然语言处理和视觉理解,GPT-4 Turbo with Vision 可以回答一般图像相关问题。 如果使用[视觉增强]还可以出示视频。
本篇文章主要简单介绍下其中的 Vision API 的使用(Vision更强大的地方是可以结合Core ML模型实现更强大的功能,本篇文章就不详细展开了) Vison 与 Core ML 的关系 Vi
搜索引擎的战火才刚拉开序幕,而普通网民将会在这场无休止的战役中取得实惠。
Orthographic projection-type正投影式:正投影式视觉传感器的视场为矩形。它们非常适合于近距离红外传感器,或激光测距仪。
在这篇文章中,我们将使用git-wild-hunt来搜索暴露在GitHub上的用户凭证信息。接下来,我们需要按照下列步骤安装和使用git-wild-hunt。
领取专属 10元无门槛券
手把手带您无忧上云