首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

Firestore -如何从一个集合中确定地获得多个随机的(非重复的,特定数量的)文档?

Firestore是一种由谷歌提供的NoSQL文档数据库,它可用于存储和同步应用程序的数据。Firestore提供了方便的API和工具,以便开发人员能够轻松地对数据进行增删改查操作,并提供了实时数据同步功能。

要从一个集合中获取多个随机的非重复文档,可以按照以下步骤进行操作:

  1. 获取集合的总文档数量。可以使用Firestore提供的collectionGroup查询来统计集合中的文档数量,例如:
  2. 获取集合的总文档数量。可以使用Firestore提供的collectionGroup查询来统计集合中的文档数量,例如:
  3. 生成要获取的随机文档的索引。根据要获取的文档数量,生成随机的索引值,确保索引值在集合的范围内。
  4. 获取随机文档。使用Firestore的limit()offset()方法结合随机生成的索引来获取随机文档,例如:
  5. 获取随机文档。使用Firestore的limit()offset()方法结合随机生成的索引来获取随机文档,例如:

在上述代码示例中,我们使用orderBy()方法对集合中的字段进行排序,以确保在使用offset()方法时获得的文档是固定的。field是你想要排序的字段名。

对于Firestore的推荐产品和产品介绍链接,由于要求不能提及特定的云计算品牌商,建议你参考Firestore官方文档和相关资源,以获取更多信息和使用指南。

相关搜索:如何在Firestore中获取文档中的集合数量?如何删除集合中的特定文档,并带有自动生成的firebase firestore flutter的id?如何在Firestore中两个不同的集合之间移动文档?Firebase firestore从集合文档中获取数据,然后从一个数组中的子集文档获取数据如何最好地查找重复项并合并mongodb集合中的特定字段我应该从一个给定的Firestore查询中获取的文档的最大数量是多少?如何从两个随机数组中获得相同数量的项目?Firestore扑腾如何获取一个集合中的所有文档及其数据的列表?如何在Firestore集合中使单元格文本标签成为文档中的特定字段?如何从一个flux中准确地获得n个成功的操作结果?如何使用Python随机丢弃一个集合中的多个元素?如何在mongoose中获得另一个集合中的文档计数?如何获取Cloud Firestore集合中的第一个文档(Flutter/Dart)如何从一个没有空格的字符串列表中确定匹配的数量?我如何从一个带把手的数组中获得一个随机的五个元素?如何提取文档中具有特定结构的MONGODB集合的前N个元素如何从一个表的多个ID中获取一个特定的名称?如何将一个集合中多个文档的值相加,并将合计和推送到另一个集合中的文档如何将带有值的集合中的所有文档以map firestore web的形式推送到另一个集合中如何将单个集合中的多个文档转换为包含一个数组的单个文档
相关搜索:
页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

骑上我心爱小摩托,再挂上AI摄像头,去认识一下全城垃圾!

大数据文摘出品 来源:medium 编译:曹培信 垃圾管理是现代城市一非常有挑战性任务,每个地区都有其独特垃圾产生模式,但无论产生垃圾种类和数量如何变化,优化垃圾收集方式是降低成本、保持城市清洁重要手段...但是medium上有位名叫Michele Moscaritolo博主就想,如果有一智能摄像头可以准确识别垃圾,那么这个问题就很好解决了。...垃圾GPS坐标通过简单gpsd接口从usb模块读取,将数据存储在Google Firestore实时数据库,这样本地Google firebase SDK就被用于客户端应用程序开发。...Ionic+Angular让我们可以从一普通代码库生产iOS和安卓应用程序,以及一基于web可以从任何浏览器访问应用程序。...Google Firebase则可以让我们将每个GPS点左边作为一嵌套集合/文档存储。

10.3K30

2021年11最佳无代码低代码后端开发利器

它们是特殊字段类型,Airtable处理数值计算。重复性任务自动化可以节省大量时间并减少错误率。在Airtable基础建立自动化工作流程是通过使用自定义动作来触发一事件。...此外,它还提供了50多个内置应用程序,可以轻松与G套件、Outlook、Sendgrid、Slack、Jira等一系列其他应用程序整合。...它们有预先定义模式,并使用结构化查询语言(SQL)来定义和操作数据。关系型或NoSQL数据库有动态模式。它们以文件集合多个集合形式存储数据。...它提供了一套有意见功能,并以NoSQL为基础。 NoSQL范式让你以集合文档形式存储数据。每个文档都包含字段。每个字段都有其独特数据类型。...接口文档规范 Bootstrap实战 - 响应式布局 为什么 Redis 查询很快,Redis 如何保证查询高效 vue3-vite-elementplus-admin管理后台V1.0.2 知网都搜不到知识

12.6K20
  • 50+ChatGPT提示词助你成为高效Web开发者(上)

    如果你已经感到编写代码重复和繁琐让你疲惫不堪,想要提高自己效率,那么你来对地方了。ChatGPT是一款能够帮助你优化工作流程、减少错误并获得提高代码见解强大工具。...使用 ChatGPT,您可以轻松将代码片段从一种语言或框架转换为另一种语言或框架。...这个集合每个文档都代表一房间,会有房间ID、房间类型、价格、是否可用等字段。 - **Bookings**:用于存储所有的预订。...这个集合每个文档都代表一预订,会有预订ID、客人ID、房间ID、预订日期、入住日期、退房日期等字段。 - **Users**:用于存储所有的用户(客人和员工)。...这个集合每个文档都代表一用户,会有用户ID、姓名、电子邮件、密码、角色(客人或员工)等字段。 b. Firebase Authentication:你可以用它来处理用户注册和登录。

    72520

    为什么我们一定要用随机权重初始化神经网络

    要理解这种解决问题方法,首先必须了解确定性和随机算法作用,以及随机优化算法在搜索过程利用随机要求。 在这篇文章,你会了解为什么神经网络权重必须被随机初始化全部背景知识。...这篇文章分为4部分; 他们是: 确定性和确定性算法 随机搜索算法 神经网络随机初始化 初始化方法 确定性和确定性算法 经典算法是确定。例如,对列表进行排序算法。...这些问题往往难到,确定性算法不能用于有效解决它们。算法当然可以运行,但想要得出结果可能会一直运行到宇宙终结。 于是我们使用确定性算法替换它。这些算法在执行算法时使用随机性元素进行决策。...这个算法使用随机性为正在学习数据输入到输出特定映射函数找到足够好权重组合。这意味着每次运行训练算法时,特定训练数据特定网络将拟合具有不同模型技能不同网络。...评估神经网络配置技能最有效方法是多次重复搜索过程,并报告模型在这些重复过程平均性能。这为配置提供了从多个不同初始条件集搜索空间机会。

    1.6K30

    Flutter 2.8正式版发布了,还不来看看

    此外,一些开发人员想要更多关于光栅缓存行为性能跟踪信息,以减少制作动画效果时的卡顿,这允许 Flutter 快速对昂贵重复使用图片进行复用而不是重新绘制。...另一支持是在 FlutterFire 文档中直接内嵌了 DartPad 实例,比如 Firestore 示例页面: 在这个示例,你将看到 Cloud Firestore 文档以及 示例应用 代码...、优化过 widget 来重建其 select 功能,你可以在 Firestore ODM 文档 阅读相关内容。...这是对我们如何处理特定于设备键盘输入方式重新设计,以及和重构 Flutter 处理文本编辑方式持续工作补充,所有这些都是用键盘这样输入密集型桌面应用所必需。...破坏性改动 (breaking changes) 与往常一样,我们努力减少每个版本破坏性更改数量

    22.4K30

    关于图算法 & 图分析基础知识概览

    当我们需要对图中特定节点,特定关系,或者特定标签或者属性进行特定分析时,子图就会很有用。 路径(Path)是一组节点及他们关系集合。...路径搜索(Pathfinding)算法建立在图搜索算法基础上,并探索节点之间路径。这些路径从一节点开始,遍历关系,直到到达目的。...例如: 旅行计划:尽可能降低探索一国家旅行成本; 追踪流感传播历史:有人使用最小生成树模型对丙型肝炎病毒感染医院暴发进行分子流行病学调查 随机游走 随机游走(Random Walk)算法从图上获得一条随机路径...随机游走算法从一节点开始,随机沿着一条边正向或者反向寻找到它邻居,以此类推,直到达到设置路径长度。...例如,在一社交网络,一拥有更多 degree 的人(节点)更容易与人发生直接接触,也更容易获得流感。 一网络平均度(average degree),是边数量除以节点数量

    3.2K30

    如何使用React和Firebase搭建一实时聊天应用

    Firebase是一由Google提供后端服务平台,它可以快速开发和部署iOS、Android和Web应用。...然后,在终端运行以下命令来安装这两依赖项:npm install firebase react-firebase-hooks3.使用Firebase Authentication在src文件夹下打开...rooms集合变化,并在组件卸载时取消订阅。...每当rooms集合有新数据时,它会更新messages状态,使其包含最新聊天室消息。然后,它使用一无序列表来显示每条消息,并使用Message组件来渲染每条消息内容。...您可以参考以下资料来了解更多细节和教程:React官方文档Firebase官方文档react-firebase-hooks库socket.io官方文档我正在参与2023腾讯技术创作特训营第四期有奖征文

    57641

    机器学习如何训练出最终模型

    例如,不管是判断猫还是狗照片,还是明天估计销售数量;机器学习项目的目标是获得最佳最终模型,其中“最佳”由以下因素决定: 数据:可用历史数据。 时间:在项目上花费时间。...k-fold交叉验证目的 为什么我们使用k-fold交叉验证? 交叉验证是另一种对未知数据进行估计方法。就像随机划分训练集和测试集。 交叉验证法可以在数据集多个子集上系统创建和估计多个模型。...如果您使用k-fold交叉验证,您将会估算出模型在平均水平上如何“错误”(或相反如何“正确”),以及该错误或正确性预期扩散程度。 这就是为什么您精心设计测试工具在机器学习是极其重要。...重抽样方法,如重复训练/测试或重复k-flod交叉验证将有助于处理方法中有多少变动。 如果是一真正要解决问题,您可以创建多个最终模型,并从一预测集合获得平均值,以减少差异。...您已经克服了确定模型障碍,例如: 了解重抽样程序目标,例如随机训练集和测试集拆分和k折交叉验证。 在所有可用数据上训练一新模型时,模型的确定。 将估计性能模型与最终确定模型分开。

    1.6K70

    我们弃用 Firebase 了

    Firestore 文档 / 集合架构:它迫使人们仔细考虑数据建模。它还反映了一直观导航方案。 Firestore 关系数据也是如此。...云 Firestore 安全规则写起来很有趣,在考虑客户端 - 服务器安全方面,这是一可靠模型。 开箱即用身份验证很不错。(不过,在我们看来,其内置 Firebase 邮件验证体验很糟糕)。...由于是闭源,你不能默认以为 Firebase 始终存在(像 Parse 一样),依赖于特定 API 版本也不可靠。 因此,你也不能真正在本地运行 Firebase。...这个 Web 片段会将站点配置为使用特定 Firebase 应用程序,并借助环境变量使我们可以跨项目保留脚手架。...对于这个问题,K-Optional Software 几乎在同一时间收到了多个关于项目(不是我们项目)咨询请求,一切都表明,是 API 突然变化造成了麻烦。

    32.6K30

    干货 | 一文读懂什么是贝叶斯机器学习

    然后,我们获得了一些数据,并且用它来更新我们信念。这个结果被称为后验概率。如果我们获得更多数据,旧后验成为一先验并且循环重复。 这个过程采用贝叶斯规则: ? ?...在这个设置,你不遗余力更好使用可用输入。 此外,小数据对于要量化确定性是非常重要,这正是贝叶斯方法擅长地方。 最后,我们将看到,贝叶斯方法通常是计算昂贵。这又伴随着小数据。...你开始使用一其中行是文档,列是单词矩阵,每个元素都是一给定文档给定单词计数。LDA”factorizes”这个矩阵大小为nxd为两矩阵,文件/主题(N×K)和主题/词(K x D)。...不同是,你不能把这两者相乘得到原始,但由于适当行/列总和为一,你可以尝试一文件。对于第一单词,一样本,一主题,然后从这个主题字(第二矩阵)。重复你想要单词数量。...数据是很小,不仅是在维度-通常只有几个参数调整,也在一些数量例子。每个例子代表一目标算法运行,这可能需要数小时或数天。因此,我们希望尽可能少例子来获得东西。

    90770

    一篇文章了解贝叶斯机器学习

    然后,我们获得了一些数据,并且用它来更新我们信念。这个结果被称为后验概率。如果我们获得更多数据,旧后验成为一先验并且循环重复。 这个过程采用贝叶斯规则: ?...在这个设置,你不遗余力更好使用可用输入。 此外,小数据对于要量化确定性是非常重要,这正是贝叶斯方法擅长地方。 最后,我们将看到,贝叶斯方法通常是计算昂贵。这又伴随着小数据。...你开始使用一其中行是文档,列是单词矩阵,每个元素都是一给定文档给定单词计数。LDA”factorizes”这个矩阵大小为nxd为两矩阵,文件/主题(N×K)和主题/词(K x D)。...不同是,你不能把这两者相乘得到原始,但由于适当行/列总和为一,你可以尝试一文件。对于第一单词,一样本,一主题,然后从这个主题字(第二矩阵)。重复你想要单词数量。...因此,我们希望尽可能少例子来获得东西。 模型与推理 推理是指你如何学习参数模型。模型与你是如何训练它是分离,特别是在贝叶斯世界。

    78060

    初学者十大机器学习算法

    这意味着结合多个不同弱ML模型预测来预测新样本。我们覆盖算法9-10-使用随机森林进行装袋,使用XGBoost进行提升是集合技术示例。...第3步:重新计算质心: 计算新群集质心。灰色恒星显示旧质心,而新质心是红色,绿色和蓝色恒星。 第4步:迭代,如果不变则退出。 重复步骤2-3,直到没有点从一簇切换到另一簇。...我们不打算在这里介绍“堆叠”,但是如果您想详细解释它,请在下面的评论部分告诉我,我可以在其上写一单独博客。 9.随机森林套袋 随机森林(多个学习者)是对袋装决策树(单个学习者)改进。...在每个分割点处要搜索特征数量被指定为随机森林算法参数。 因此,在使用随机森林装袋,使用随机记录样本构建每个树,并且使用随机预测变量构建每个分割。...第4步:结合决策树桩: 我们结合了之前3模型分离器,并观察到与任何单个弱学习者相比,此模型复杂规则正确对数据点进行了分类。

    71630

    AI和机器学习A~Z:综合术语表

    Analytical Validation (分析验证) 衡量任务从输入数据准确可靠生成预期技术输出能力。机器学习验证技术用于获得ML模型错误率。...强AI反面是弱AI。一般AI反面是狭窄AI。 事实是,这是习惯在大片中看到AI,在现实生活无法达到这种智能水平。称之为强大,因为认为它比我们强大,但它只不过是一不知道如何实现想法。...AI和ML都是一组算法,但ML只能输入结构化数据,AI可以处理结构化和结构化信息,以便完成任务而无需编程如何操作。...Classification (分类) 在机器学习和统计,分类是一种监督学习算法技术,允许机器将类别分配给数据点(将数据分类到给定数量)。...这是一特定过程,在这个过程,机器(计算机)通过向他们提供数据并让他们自己学习一些技巧来学习,而没有明确编程这样做。总而言之,机器学习是人工智能核心和土豆。

    1.3K20

    通俗理解LDA主题模型

    伯努利分布,又称两点分布或0-1分布,是一离散型随机分布,其中随机变量只有两类取值,正即负{+,-}。而二项分布即重复n次伯努利试验,记为 ? 。...区别于下文要介绍LDA:样本固定,参数未知但不固定,是随机变量,服从一分布,所以LDA属于贝叶斯派思想),可观测得到,所以对于任意一篇文档,其 ? 是已知。...但再怎么变化,也依然服从一分布,即主题分布跟词分布由Dirichlet先验随机确定。...这就是贝叶斯派核心思想,把未知参数当作是随机变量,不再认为是某一确定值),但其先验分布是dirichlet 分布,所以可以从无穷多个主题分布按照dirichlet 先验随机抽取出某个主题分布出来...进一步,贝叶斯估计,参数多个估计值服从一先验分布,而后根据实践获得数据(例如周末不断跑他家),不断修正之前参数估计,从先验分布慢慢过渡到后验分布。 OK,相信已经解释清楚了。

    20.5K82

    第 17 章 标准库特殊设施

    与 pair类似,但 tuple可以有任意数量成员。它常见用途就是从一函数返回多个值。 tuple默认构造函数会对每个成员进行值初始化,也可以提供初始值。...---- 17.2 bitset类型 bitset类,可以方便将整型运算对象当作二进制位集合处理,并且能够处理超过最长整型类型大小集合。可以用以下几种方式进行值初始化。...如果正则表达式模式包含一多个子表达式时,得到 smatch对象还会包含多个 ssmatch对象,表示与模式每个子表达式匹配信息。 对于多个子表达式,使用括号来进行分组隔开。...C++解决上述问题方法是,使用随机数发生器,包括一随机数引擎(生成 unsigned随机数序列)和分布对象(使用引擎返回服从特定概率分布随机数)。...IO类型维护一标记来确定下一读写操作要在哪里进行,g版本表示正在“获得”(读取)数据,而 p版本表示正在“放置”(写入)数据。

    1.1K30

    数学建模--蒙特卡罗随机模拟

    通过在一正方形内随机生成点并判断这些点是否落在内切圆内,可以估算出圆周率值。这种方法简单直观,但需要大量随机抽样以获得较高精度。 如何改进蒙特卡罗方法以提高计算效率和精度?...指定从特定状态开始,然后采取特定动作,在所有可能性上循环采样它们回报,从而弥补大型状态空间探索不足。 在实际应用,蒙特卡罗方法如何处理随机性和不确定性?...这种方法可以有效计算业务风险和预测失败,如成本或调度超支。 具体来说,蒙特卡罗方法依赖于大量随机抽样,通过重复多次模拟来估计不确定事件可能结果。...在每次模拟过程,都会为具有不确定变量赋值一随机值,然后运行模型并记录结果。这个过程会重复N次,每次使用不同变量值进行模拟。...在能源系统方面,例如独立微网优化配置,蒙特卡罗随机模拟能够很好模拟风能、太阳能等可再生能源及负荷需求确定性,从而有效处理系统不确定性因素。

    10310

    「自然语言处理」使用自然语言处理智能文档分析

    什么是智能文档分析? 智能文档分析(IDA)是指使用自然语言处理(NLP)和机器学习从结构化数据(文本文档、社交媒体帖子、邮件、图像等)获得洞察。...文本相似性可用于检测文档文档部分重复项和近似重复项。这里有两个例子: 通过比较论文内容相似性来检查学术论文是否抄袭。 匹配求职者和工作,反之亦然。...标签数量-单标签分类将一项目精确分类为一类别,而多标签分类可以将一项目分类为多个类别。将新闻文章分类到多个主题区域就是多标签分类例子。...关系提取可用于处理结构化文档,以确定具体关系,然后将这些关系用于填充知识图。 例如,该技术可以通过处理结构化医学文档来提取疾病、症状、药物等之间关系。 7....“如果一人可以在不经过多年培训情况下学会准确完成这项任务,那么IDA就有可能通过加快过程、保持一致性或减少体力劳动来带来好处。” 如何处理智能文档分析项目?

    2.4K30

    用人工神经网络预测急诊科患者幸存还是死亡

    当它们都接近1时,模型性能就越好; 当它们其中任何一接近0时,模型性能就会下降。在最理想情况下,当模型完美预测每个标签时,混淆矩阵在对角线上项为0。...定义隐层数量和每层中计算单元数量。(从一简单模型开始。) 使用k重交叉验证技术获得基于候选特征训练集数据和测试集数据。...在根据领域知识去除大多数数据项后,我们最初确定了一组候选特征并且生成了一LIBSVM格式数据文件。这是机器学习应用中常用格式。 我们从一简单模型开始,该模型有2隐层,每层5计算单元。...循环重复10次以下步骤:(i)获得训练和测试数据集(ii)训练模型和测量模型性能。 最后,停止Spark上下文。这就终止了主程序。...当使用ANN作为分类器时,建议特征在数量级保持平衡。 事实上,在我们例子,除年龄重新编码外以外所有特征都是二进制。年龄重新编码从一组离散8接受值,这个差异在可接受范围内。

    1.4K70

    Redis 数据结构和常用命令

    Redis 主要功能都基于单线程模型实现,也就是说 Redis 使用一线程来服务所有的客户端请求,同时 Redis 采用了阻塞式 IO,并精细优化各种命令算法时间复杂度,这些信息意味着: Redis...维护一集合时,提供了比 List 效率高得多随机访问命令 与 Hash 相关常用命令: HSET:将 key 对应 Hash field 设置为 value。...Set 随机返回 1 多个 member,时间复杂度 O(N),N 为返回 member 个数 SPOP:从指定 Set 随机移除并返回 count member,时间复杂度 O(N),...HyperLogLogs 是一种主要用于数量统计数据结构,它和 Set 类似,维护一不可重复 String 集合,但是 HyperLogLogs 并不维护具体 member 内容,只维护 member...也就是说,HyperLogLogs 只能用于计算一集合重复元素数量,所以它比 Set 要节省很多内存空间。

    27120

    Redis 数据结构和主要命令

    Redis 主要功能都基于单线程模型实现,也就是说 Redis 使用一线程来服务所有的客户端请求,同时 Redis 采用了阻塞式 IO,并精细优化各种命令算法时间复杂度,这些信息意味着: Redis...维护一集合时,提供了比 List 效率高得多随机访问命令 与 Hash 相关常用命令: HSET:将 key 对应 Hash field 设置为 value。...Set 随机返回 1 多个 member,时间复杂度 O(N),N 为返回 member 个数 SPOP:从指定 Set 随机移除并返回 count member,时间复杂度 O(N),...HyperLogLogs 是一种主要用于数量统计数据结构,它和 Set 类似,维护一不可重复 String 集合,但是 HyperLogLogs 并不维护具体 member 内容,只维护 member...也就是说,HyperLogLogs 只能用于计算一集合重复元素数量,所以它比 Set 要节省很多内存空间。

    41820
    领券