首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

SQL和Python中的特征工程:一种混合方法

这两个表将被加载到该数据库中。 安装sqlalchemy 您需要Pandas和sqlalchemy才能在Python中使用SQL。你可能已经有Pandas了。...因为此数据集是一个事件日志,所以我们必须避免将来的信息泄漏到每个数据点中。可以想象,每个功能都需要在历史记录中汇总! 连接表是最慢的操作,因此我们希望从每个连接中获得尽可能多的功能。...如果只需要数据的子集,则该函数将表名称“ trn_set”(训练集)或“ tst_set”(测试集)作为输入,并使用可选的 limit 子句。 删除唯一列和缺少大多数值的列。...在两种情况下,SQL方法更加有效: 如果您的数据集已部署在云上,则您可以运行分布式查询。今天,大多数SQL Server支持分布式查询。在熊猫中,您需要一些名为Dask DataFrame的扩展 。...尽管我不主张使用另一种方法,但有必要了解每种方法的优点和局限性,并在我们的工具包中准备好这两种方法。因此,我们可以应用在约束条件下最有效的方法。

2.7K10

再见Pandas,又一数据处理神器!

Dask: Dask是一个灵活的Python并行计算库,使得在工作流程中平滑而简单地实现规模化。在CPU上,Dask使用Pandas来并行执行DataFrame分区上的操作。...因为在GPU上迭代数据会导致极差的性能,GPU优化用于高度并行操作而不是顺序操作。 结果排序: 默认情况下,cuDF中的join(或merge)和groupby操作不保证输出排序。...浮点运算: cuDF利用GPU并行执行操作,因此操作的顺序不总是确定的。这影响浮点运算的确定性,因为浮点运算是非关联的。...在比较浮点结果时,建议使用cudf.testing模块提供的函数,允许您根据所需的精度比较值。 列名: 与Pandas不同,cuDF不支持重复的列名。最好使用唯一的字符串作为列名。...何时使用cuDF和Dask-cuDF cuDF: 当您的工作流在单个GPU上足够快,或者您的数据在单个GPU的内存中轻松容纳时,您会希望使用cuDF。

28110
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    使用Wordbatch对Python分布式AI后端进行基准测试

    作者 | Antti Puurula 来源 | Medium 编辑 | 代码医生团队 走向分布式人工智能 在过去的几年里,Python已成为数据科学和人工智能的通用语言,所有使用Python作为主要界面语言的着名深度学习框架...直到最近,大部分此类大数据技术都基于Hadoop等Java框架,但软件和硬件的变化带来了新的解决方案类型,包括用于AI的三个主要Python分布式处理框架:PySpark,Dask和射线。...Dask和Ray都基于Spark的DAG并发功能评估的核心思想,数据在整个过程中保持分布。...拼写校正和字典计数步骤都执行自己的Map-Reduce操作来计算字频表,拼写校正和特征提取步骤需要向每个工作人员发送字典。...Spark,Ray和多处理再次显示线性加速,随着数据的增加保持不变,但Loky和Dask都无法并行化任务。相比于为1.28M文档连续拍摄460s,Ray在91s中再次以最快的速度完成。

    1.6K30

    cuDF,能取代 Pandas 吗?

    Dask: Dask是一个灵活的Python并行计算库,使得在工作流程中平滑而简单地实现规模化。在CPU上,Dask使用Pandas来并行执行DataFrame分区上的操作。...因为在GPU上迭代数据会导致极差的性能,GPU优化用于高度并行操作而不是顺序操作。 结果排序: 默认情况下,cuDF中的join(或merge)和groupby操作不保证输出排序。...浮点运算: cuDF利用GPU并行执行操作,因此操作的顺序不总是确定的。这影响浮点运算的确定性,因为浮点运算是非关联的。...在比较浮点结果时,建议使用cudf.testing模块提供的函数,允许您根据所需的精度比较值。 列名: 与Pandas不同,cuDF不支持重复的列名。最好使用唯一的字符串作为列名。...何时使用cuDF和Dask-cuDF cuDF: 当您的工作流在单个GPU上足够快,或者您的数据在单个GPU的内存中轻松容纳时,您会希望使用cuDF。

    45412

    再见Pandas,又一数据处理神器!

    Dask: Dask是一个灵活的Python并行计算库,使得在工作流程中平滑而简单地实现规模化。在CPU上,Dask使用Pandas来并行执行DataFrame分区上的操作。...因为在GPU上迭代数据会导致极差的性能,GPU优化用于高度并行操作而不是顺序操作。 结果排序: 默认情况下,cuDF中的join(或merge)和groupby操作不保证输出排序。...浮点运算: cuDF利用GPU并行执行操作,因此操作的顺序不总是确定的。这影响浮点运算的确定性,因为浮点运算是非关联的。...在比较浮点结果时,建议使用cudf.testing模块提供的函数,允许您根据所需的精度比较值。 列名: 与Pandas不同,cuDF不支持重复的列名。最好使用唯一的字符串作为列名。...何时使用cuDF和Dask-cuDF cuDF: 当您的工作流在单个GPU上足够快,或者您的数据在单个GPU的内存中轻松容纳时,您会希望使用cuDF。

    32310

    NVIDIA的python-GPU算法生态 ︱ RAPIDS 0.10

    ---- RAPIDS核心库更新 cuDF cuDF在过去一年中的发展速度非常之快。每个版本都加入了令人兴奋的新功能、优化和错误修复。0.10版本也不例外。...最后,你会注意到cuDF在这个版本中速度有了显著提升,包括join(最多11倍)、gather和scatter on tables(速度也快2-3倍)的大幅性能改进,以及更多如图5所示的内容。...目前已弃用较旧的Dask-XGBoost API,但它仍可以与RAPIDS 0.10配合使用。...Dask Dask在HPC和Kubernetes系统上实现了标准化部署,包括支持与客户端分开运行调度程序,从而使用户可以在本地笔记本计算机上轻松地启动远程集群上的计算。...Dask还为使用云但无法采用Kubernetes的机构添加了AWS ECS原生支持。

    3K31

    干货 | 数据分析实战案例——用户行为预测

    pandas在分析结构化数据方面非常的流行和强大,但是它最大的限制就在于设计时没有考虑到可伸缩性。...Dask已将数据帧分为几块加载,这些块存在 于磁盘上,而不存在于RAM中。如果必须输出数据帧,则首先需要将所有数据帧都放入RAM,将它们缝合在一 起,然后展示最终的数据帧。...其实dask使用了一种延迟数 据加载机制,这种延迟机制类似于python的迭代器组件,只有当需要使用数据的时候才会去真正加载数据。...data["Be_type"] # 使用dask的时候,所有支持的原pandas的函数后面需加.compute()才能最终执行 Be_counts = data["Be_type"].value_counts...(pv_class).join(fav_class).join(cart_class).join(buy_class). iloc[:,1:] user_behavior_counts.head()

    3.3K20

    Cloudera机器学习中的NVIDIA RAPIDS

    dask(dask_cuda)。...我们首先将其转换为Parquet格式,因为大多数数据湖都存在于存储有Parquet文件的对象存储中。Parquet还存储类型元数据,这使得稍后回读和处理文件稍微容易些。...特征工程 现在我们对它的工作原理有了一个了解,让我们看一个更高级的功能工程管道。 对于我们的简单要素工程流水线,我们仅使用主训练表,而未查看数据集中的其他表。...对于我们的高级功能工程流水线,我们将包括辅助数据并设计一些其他功能。 打开Comparing_Frameworks.ipynb文件以查看cuDF和熊猫的比较。...在此阶段值得注意的是,RAPIDS cuDF只能利用一个GPU。如果我们希望扩展到单个GPU之外,则需要利用`dask_cudf`。 建模 对于高级建模部分,我们将再次利用xgboost作为主要方法。

    95120

    有比Pandas 更好的替代吗?对比Vaex, Dask, PySpark, Modin 和Julia

    表格是存储数据的最典型方式,在Python环境中没有比Pandas更好的工具来操作数据表了。尽管Pandas具有广泛的能力,但它还是有局限性的。...我们将看一下Dask,Vaex,PySpark,Modin(全部使用python)和Julia。...这些工具可以分为三类: 并行/云计算— Dask,PySpark和Modin 高效内存利用— Vaex 不同的编程语言— Julia 数据集 对于每种工具,我们将使用Kaggle欺诈检测数据集比较基本操作的速度...主要操作包括加载,合并,排序和聚合数据 Dask-并行化数据框架 Dask的主要目的是并行化任何类型的python计算-数据处理,并行消息处理或机器学习。扩展计算的方法是使用计算机集群的功能。...考虑到它们更复杂的语法、额外的安装要求和缺乏一些数据处理能力,这些工具不能作为pandas的理想替代品。 Vaex显示了在数据探索过程中加速某些任务的潜力。在更大的数据集中,这种好处会变得更明显。

    4.8K10

    【Python篇】深入挖掘 Pandas:机器学习数据处理的高级技巧

    Pandas 作为 Python 中最流行的数据处理库,为开发者提供了非常强大的工具集,能够在数据处理、特征生成、时序分析等多个方面发挥重要作用。...# 在原数据上删除列,而不创建新对象 df.drop(columns=['Column_to_Drop'], inplace=True) 使用 view 而不是 copy:在特定情况下,我们可以通过 view...Dask 是一个并行计算框架,可以无缝扩展 Pandas 的操作,使其支持多线程和多进程处理。...首先需要安装 Dask: pip install dask 然后使用 Dask 读取大型数据集,并以 DataFrame 的形式处理数据。...# 使用 query 进行复杂查询 df_filtered = df.query('Income > 50000 & Age < 40') 8.2 使用 pivot_table() 进行数据透视 数据透视表是非常常用的数据分析工具

    23910

    Pandas高级数据处理:数据流式计算

    一、引言在大数据时代,数据的规模和复杂性不断增加,传统的批量处理方法逐渐难以满足实时性和高效性的需求。Pandas作为Python中强大的数据分析库,在处理结构化数据方面表现出色。...在实际应用中,例如金融交易系统、物联网设备监控等场景,都需要对不断产生的数据进行实时处理,以便及时做出决策。...dask是一个并行计算库,它可以与Pandas无缝集成,支持大规模数据的分布式处理。dask可以在不增加内存占用的情况下处理更大的数据集。2....例如:# 不推荐的做法:使用apply逐行处理df['new_column'] = df.apply(lambda row: some_function(row), axis=1)# 推荐的做法:使用向量化操作...通过合理使用chunksize、向量化操作、dask等工具,可以有效解决内存溢出和性能瓶颈问题。同时,注意数据一致性和常见报错的处理,能够帮助我们在流式计算中更加稳健地处理数据。

    7710

    数据导入与预处理-第4章-pandas数据获取

    所以names和header的使用场景主要如下: csv文件有表头并且是第一行,那么names和header都无需指定; csv文件有表头、但表头不是第一行,可能从下面几行开始才是真正的表头和数据,...xlsx)是日常工作中经常使用的,该文件主要以工作表存储数据,工作表中包含排列成行和列的单元格。...sheetname:返回多表使用sheetname=[0,1],若sheetname=None是返回全表 → ① int/string 返回的是dataframe ②而none和list返回的是dict...flavor:表示使用的解析引擎。 index_col:表示将网页表格中的列标题作为DataFrame的行索引。 encoding:表示解析网页的编码方式。...con:表示使用SQLAlchemy连接数据库。 index_col:表示将数据表中的列标题作为DataFrame的行索引。。

    4.1K31

    为什么说 Python 是数据科学的发动机(二)工具篇(附视频中字)

    CDA字幕组该讲座视频进行了汉化,附有中文字幕的视频如下: 针对不方面开视频的小伙伴,CDA字幕组也贴心的整理了文字版本,如下: (文末有彩蛋!...如果你想快速的进行numerical和Python,一切都取决于NumPy。 如果你使用pandas使用scikit-learn,如果使用任何这些库,它们往往是在Numpy的基础上。...如果你想用parallel的话,有一个问世一两年的库称为Dask。 ? Dask很有意思,如果你使用Numpy的话,这是你会使用的工具。取一个数组a,乘以4,记住把所有的元素乘以4。...然后你可以把任务图转换成任何内容,可能是你计算机上的在多个内核,可能是簇上的多个机器上,可能亚马逊云或者Azure云上的内容,最后你可以进行计算。 在数据科学领域使用Dask可以实现很多有趣的内容。...实时进行滚动、缩放、以及渲染 这都基于后端的Numba。 另一种优化代码的方式是Cython。 ? Cython不太一样,它是Python的超集合。它能让你将Python编译的到快速C代码中。

    1.4K100

    仅需添加一行代码,即可让Pandas加速四倍 | Pandas on Ray

    首先了解一些基础知识: Pandas作为Python中用于处理数据的库,能简单且灵活地处理不同种类、大小的数据。除此之外,Pandas还有许多函数有助于轻松处理不同数据。 ?...Pandas DataFrame(左)作为整体储存,只交给一个CPU处理。ModinDataFrame(右)行和列都被切割,每个部分交给不同CPU处理,有多少CPU就能处理多少个任务。...Dask后端还处在测试阶段。 至此,理论说的够多了。接下来聊聊代码和速度基准点。 基准测试Modin的速度 pip是安装Modin最简单的方法。...下列表格对比展示了笔者分别使用Pandas和Modin做测试的运行时间。 如图所示,在一些操作中,Modin的速度明显要快一些,通常是读取数据,查询数值的时候。...希望本文能够帮助你成为“熊猫速度达人”!

    5.6K30

    手把手教你搭建一个 Python 连接数据库,快速取数工具

    基于底层数据来开发不难,无非是将用户输入变量作为筛选条件,将参数映射到 sql 语句,并生成一个 sql 语句然后再去数据库执行 最后再利用 QT 开发一个 GUI 界面,用户界面的点击和筛选条件,信号触发对应按钮与绑定的传参槽函数执行...通过使用所有数据库访问模块通用的数据库 API 来实现 Oracle 数据库的查询和更新 Pandas 是基于 NumPy 开发,为了解决数据分析任务的模块,Pandas 引入了大量库和一些标准的数据模型...2:pd.read_sql_table() 读取数据库中的表,返还DataFrame格式(通过表名) import pandas as pd pd.read_sql_table(table_name,...3:pd.read_sql() 读数据库通过SQL脚本或者表名 import pandas as pd pd.read_sql(sql, con, index_col=None,coerce_float...Oracle 数据库的驱动,通过使用所有数据库访问模块通用的数据库 API 来实现 Oracle 数据库的查询和更新。

    1.4K30

    数据科学家令人惊叹的排序技巧

    不过需要注意的是这个排序算法的使用和对这些参数名字的期待会有所不同,比如传递kind=quicksort实际上采用的是一个 introsort 算法,这里给出 numpy 的文档解释: 当没有足够的进展的时候...目前它是作为排序算法,而如果没有设置 kind 参数,默认选择还是快速排序quicksort ,而对于整数数据类型,'mergesort' 和 'stable' 被映射为采用 radix sort 方法...TensorFlow TensorFlow 是目前最流行的深度学习框架,这里可以看下我写的这篇对比不同深度学习框架的流行性和使用方法的文章: https://towardsdatascience.com...Tensor, LongTensor 的输出元祖,可用于作为输出的缓存。...而刚刚介绍的 TensorFlow 使用的 CUB 库是对 Thrust 的封装。所以 PyTorch 和 TensorFlow 都采用相似的排序算法实现方式。

    1.3K10

    明月机器学习系列(六):构建机器学习or深度学习环境

    基于Docker镜像,提供统一的学习和训练环境,除了方便机器学习工程师之外,还有就是为了机器学习工程师和IT工程师能更好的进行协作。 1....简单说,就是希望该Notebook能同时支持机器学习,NLP和图像处理,这是我们公司主要的三个方向。 2....基础镜像 ---- 基础镜像就是类似Anaconda Notebook,但我们没有选择Anaconda Notebook的官方镜像作为基础镜像,而是基于tensorflow的官方镜像进行构建: FROM...应用情况 ---- 我们将编译好的镜像部署到几个服务器上,每个服务器上的版本都保持一致,能为大家提供统一的学习和训练环境,提升效率。...,不过实际使用的时候,也会出现需要额外安装包的问题。

    91310
    领券