首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

Dask教程:使用dask.delayed并行化代码

在本节中,我们使用 Dask 和 dask.delayed 并行化简单的 for 循环样例代码。通常,这是将函数转换为与 Dask 一起使用所需的唯一函数。...这是使用 dask 并行化现有代码库或构建复杂系统的一种简单方法。这也将有助于我们对后面的部分进行理解。...Dask 有多种并行执行代码的方法。...练习:并行化 for 循环 for 循环是我们想要并行化的最常见的事情之一。在 inc 和 sum 上使用 dask.delayed 并行化以下计算。...需要知道一些额外的事情。 延迟对象上的方法和属性访问会自动工作,因此如果您有一个延迟对象,您可以对其执行正常的算术、切片和方法调用,它将产生正确的延迟调用。

4.5K20

干货 | 数据分析实战案例——用户行为预测

这里关键是使用dask库来处理海量数据,它的大多数操作的运行速度比常规pandas等库快十倍左右。...这就是Dask DataFrame API发挥作用的地方:通过为pandas提供一个包装器,可以智能的将巨大的DataFrame分隔成更小的片段,并将它们分散到多个worker(帧)中,并存储在磁盘中而不是...具体操作就是对每个分区并 行或单独操作(多个机器的话也可以并行),然后再将结果合并,其实从直观上也能推出Dask肯定是这么做的。...Dask已将数据帧分为几块加载,这些块存在 于磁盘上,而不存在于RAM中。如果必须输出数据帧,则首先需要将所有数据帧都放入RAM,将它们缝合在一 起,然后展示最终的数据帧。...其实dask使用了一种延迟数 据加载机制,这种延迟机制类似于python的迭代器组件,只有当需要使用数据的时候才会去真正加载数据。

3.3K20
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    MMClassificiation|实现数据增强的 N 种方法

    众所周知,即使是目前最先进的神经网络模型,其本质上也是在利用一系列线性和非线性的函数去拟合目标输出。...一个常见的误区 在介绍数据增强方法之前,希望能澄清一个常见的误区——一些人会认为,既然有这么多数据增强的方法,那么我一口气全堆到一起,是不是就能获得最好的增强效果?...这两个例子在提醒我们,有必要对数据增强方法有一个清晰的了解,然后针对自己的任务,选择合适的数据增强方法,才能充分发挥数据增强的作用。 2....这种数据增强的方式能够在保留图像比例的基础上,移动图片上各区域在图片上的位置。...,接下来我们介绍一些对图像的色彩进行数据增强的方法。

    2.2K00

    安利一个Python大数据分析神器!

    来源:Python数据科学 作者:东哥起飞 对于Pandas运行速度的提升方法,之前已经介绍过很多回了,里面经常提及Dask,很多朋友没接触过可能不太了解,今天就推荐一下这个神器。...官方:https://dask.org/ Dask支持Pandas的DataFrame和NumpyArray的数据结构,并且既可在本地计算机上运行,也可以扩展到在集群上运行。...这些集合类型中的每一个都能够使用在RAM和硬盘之间分区的数据,以及分布在群集中多个节点上的数据。...对于原始项目中的大部分API,这些接口会自动为我们并行处理较大的数据集,实现上不是很复杂,对照Dask的doc文档即可一步步完成。...Delayed 下面说一下Dask的 Delay 功能,非常强大。 Dask.delayed是一种并行化现有代码的简单而强大的方法。

    1.6K20

    cuDF,能取代 Pandas 吗?

    Dask: Dask是一个灵活的Python并行计算库,使得在工作流程中平滑而简单地实现规模化。在CPU上,Dask使用Pandas来并行执行DataFrame分区上的操作。...这使得在GPU上利用cuDF的高性能数据处理能力,从而加速大规模数据处理任务。...因为在GPU上迭代数据会导致极差的性能,GPU优化用于高度并行操作而不是顺序操作。 结果排序: 默认情况下,cuDF中的join(或merge)和groupby操作不保证输出排序。...何时使用cuDF和Dask-cuDF cuDF: 当您的工作流在单个GPU上足够快,或者您的数据在单个GPU的内存中轻松容纳时,您会希望使用cuDF。...Dask-cuDF: 当您希望在多个GPU上分布您的工作流程时,或者您的数据量超过了单个GPU内存的容量,或者希望同时分析许多文件中分布的数据时,您会希望使用Dask-cuDF。

    45412

    搞定100万行数据:超强Python数据分析利器

    2 Vaex Vaex是一种更快、更安全、总体上更方便的方法,可以使用几乎任意大小的数据进行数据研究分析,只要它能够适用于笔记本电脑、台式机或服务器的硬盘驱动器。...Vaex不生成DataFrame副本,所以它可以在内存较少的机器上处理更大的DataFrame。 Vaex和Dask都使用延迟处理。...唯一的区别是,Vaex在需要的时候才计算字段,而Dask需要显式地使用compute函数。 数据需要采用HDF5或Apache Arrow格式才能充分利用Vaex。...dvv = dv[dv.col1 > 90] 6 高性能聚合数据 列如value_counts、groupby、unique和各种字符串操作都使用了快速高效的算法,这些算法都是在C++底层实现的。...例如,我们可以使用.count方法在不同的选择上创建两个直方图,只需对数据进行一次传递。非常有效!

    2.2K1817

    再见Pandas,又一数据处理神器!

    Dask: Dask是一个灵活的Python并行计算库,使得在工作流程中平滑而简单地实现规模化。在CPU上,Dask使用Pandas来并行执行DataFrame分区上的操作。...这使得在GPU上利用cuDF的高性能数据处理能力,从而加速大规模数据处理任务。...因为在GPU上迭代数据会导致极差的性能,GPU优化用于高度并行操作而不是顺序操作。 结果排序: 默认情况下,cuDF中的join(或merge)和groupby操作不保证输出排序。...何时使用cuDF和Dask-cuDF cuDF: 当您的工作流在单个GPU上足够快,或者您的数据在单个GPU的内存中轻松容纳时,您会希望使用cuDF。...Dask-cuDF: 当您希望在多个GPU上分布您的工作流程时,或者您的数据量超过了单个GPU内存的容量,或者希望同时分析许多文件中分布的数据时,您会希望使用Dask-cuDF。

    28110

    使用Dask DataFrames 解决Pandas中并行计算的问题

    大多数Dask API与Pandas相同,但是Dask可以在所有CPU内核上并行运行。它甚至可以在集群上运行,但这是另一个话题。 今天你将看到Dask在处理20GB CSV文件时比Pandas快多少。...你可以看到下面的总运行时间: 让我们来比较一下不同点: 这并不是一个显著的区别,但Dask总体上是一个更好的选择,即使是对于单个数据文件。...这不是最有效的方法。 glob包将帮助您一次处理多个CSV文件。您可以使用data/*. CSV模式来获取data文件夹中的所有CSV文件。然后,你必须一个一个地循环读它们。...一个明显的赢家,毋庸置疑。 让我们在下一节结束这些内容。 结论 今天,您学习了如何从Pandas切换到Dask,以及当数据集变大时为什么应该这样做。...Dask的API与Pandas是99%相同的,所以你应该不会有任何切换困难。 请记住—有些数据格式在Dask中是不支持的—例如XLS、Zip和GZ。此外,排序操作也不受支持,因为它不方便并行执行。

    4.3K20

    再见Pandas,又一数据处理神器!

    Dask: Dask是一个灵活的Python并行计算库,使得在工作流程中平滑而简单地实现规模化。在CPU上,Dask使用Pandas来并行执行DataFrame分区上的操作。...这使得在GPU上利用cuDF的高性能数据处理能力,从而加速大规模数据处理任务。...因为在GPU上迭代数据会导致极差的性能,GPU优化用于高度并行操作而不是顺序操作。 结果排序: 默认情况下,cuDF中的join(或merge)和groupby操作不保证输出排序。...何时使用cuDF和Dask-cuDF cuDF: 当您的工作流在单个GPU上足够快,或者您的数据在单个GPU的内存中轻松容纳时,您会希望使用cuDF。...Dask-cuDF: 当您希望在多个GPU上分布您的工作流程时,或者您的数据量超过了单个GPU内存的容量,或者希望同时分析许多文件中分布的数据时,您会希望使用Dask-cuDF。

    32310

    多快好省地使用pandas分析大型数据集

    2 pandas多快好省策略 我们使用到的数据集来自kaggle上的「TalkingData AdTracking Fraud Detection Challenge」竞赛( https://www.kaggle.com...('train.csv', nrows=1000) raw.info() 图3 怪不得我们的数据集读进来会那么的大,原来所有的整数列都转换为了int64来存储,事实上我们原数据集中各个整数字段的取值范围根本不需要这么高的精度来存储...,前1000行数据集的内存大小被压缩了将近54.6%,这是个很大的进步,按照这个方法我们尝试着读入全量数据并查看其info()信息: 图5 可以看到随着我们对数据精度的优化,数据集所占内存有了非常可观的降低...,同样的思想,如果你觉得上面分块处理的方式有些费事,那下面我们就来上大招: 「利用dask替代pandas进行数据分析」 dask相信很多朋友都有听说过,它的思想与上述的分块处理其实很接近,只不过更加简洁....groupby(['app', 'os']) .agg({'ip': 'count'}) .compute() # 激活计算图 ) 并且dask会非常智能地调度系统资源,使得我们可以轻松跑满所有

    1.4K40

    Python连接数据库的N种方法

    引言 在现代软件开发中,连接数据库是至关重要的一部分。Python作为一种广泛使用的编程语言,提供了多种连接数据库的方法。...本文将介绍使用Python连接数据库的多种方法,包括标准库、第三方库以及ORM框架。 使用Python连接数据库的重要性 数据库是存储和管理数据的关键组件。...使用Python连接数据库的常见方法 在Python中,连接数据库的方法多种多样,但主要分为三类:使用标准库、使用第三方库和使用ORM框架。...如何选择合适的方法 在选择连接数据库的方法时,需要考虑项目的需求、规模和开发人员的经验。...结论 Python提供了多种连接数据库的方法,开发者可以根据项目需求选择合适的方法。无论是使用标准库、第三方库还是ORM框架,都可以轻松地连接各种类型的数据库,并进行高效的数据操作和管理。

    1.4K10

    猫头虎 分享:Python库 Dask 的简介、安装、用法详解入门教程

    摘要:Dask 简介与背景 Dask 是 Python 的并行计算库,它能够扩展常见的数据科学工具,例如 pandas、NumPy 和 scikit-learn,并支持处理大规模数据集。...它最大的亮点是可以让开发者在本地和分布式环境中无缝工作。 Dask 解决了传统数据处理库在数据集规模较大时出现的性能瓶颈问题。...如何使用 Dask 处理数据:核心用法 接下来猫哥带大家看看 Dask 的核心功能如何帮助我们更快处理数据。...import dask.dataframe as dd # 读取一个超大 CSV 文件 df = dd.read_csv('large_file.csv') # 进行操作,例如 groupby 和...print(result) 猫头虎提示: Dask 的 .compute() 方法是关键,它触发延迟计算,将所有操作并行执行。

    30410

    谁是PythonRJulia数据处理工具库中的最强武器?

    Python/R/Julia中的数据处理工具多如牛毛「如pandas、spark、DataFrames.jl、polars、dask、dplyr、data.table、datatable等等」,如何根据项目需求挑选趁手的武器...DataFrames.jl 3种其它工具 spark ClickHouse duckdb 评估方法 分别测试以上工具在在0.5GB、5GB、50GB数据量下执行groupby、join的效率..., 数据量 0.5GB 数据 10,000,000,000行、9列 5GB 数据 100,000,000,000行、9列 50GB 数据1,000,000,000,000行、9列 groupby性能 比较以下各种需求的效率...、Julia中的DataFrame.jl等在groupby时是一个不错的选择,性能超越常用的pandas,详细, 0.5GB数据 groupby 5GB数据 groupby 50GB数据 groupby...join 同样可以看到Python中的Polars、R中的data.table在join时表现不俗,详细, 0.5GB数据 join 5GB数据 join 50GB数据 join 小结 R中的data.table

    1.8K40

    资源 | Pandas on Ray:仅需改动一行代码,即可让Pandas加速四倍

    数据科学家应该用 DataFrame 来思考,而不是动态的任务图 Dask 用户一直这样问自己: 我什么时候应该通过 .compute() 触发计算,我什么时候应该调用一种方法来创建动态任务图?...这个调用在 Dask 的分布式数据帧中是不是有效的? 我什么时候应该重新分割数据帧? 这个调用返回的是 Dask 数据帧还是 Pandas 数据帧?...使用 Pandas on Ray 的时候,用户看到的数据帧就像他们在看 Pandas 数据帧一样。...我们要速度,也要扩展性 Dask 默认是以多线程的模式运行的,这意味着一个 Dask 数据帧的所有分割部分都在一个单独的 Python 进程中。...Ray 的性能是快速且可扩展的,在多个数据集上都优于 Dask。

    3.4K30

    并行计算框架Polars、Dask的数据处理性能对比

    (df_dask): df_dask = df_dask.groupby("PULocationID").agg({"trip_distance": "mean"}) return...下面是每个库运行五次的结果: Polars Dask 2、中等数据集 我们使用1.1 Gb的数据集,这种类型的数据集是GB级别,虽然可以完整的加载到内存中,但是数据体量要比小数据集大很多。...Polars Dask 3、大数据集 我们使用一个8gb的数据集,这样大的数据集可能一次性加载不到内存中,需要框架的处理。...由于polar和Dask都是使用惰性运行的,所以下面展示了完整ETL的结果(平均运行5次)。 Polars在小型数据集和中型数据集的测试中都取得了胜利。...但是,Dask在大型数据集上的平均时间性能为26秒。 这可能和Dask的并行计算优化有关,因为官方的文档说“Dask任务的运行速度比Spark ETL查询快三倍,并且使用更少的CPU资源”。

    50940

    告别Pandas瓶颈,迎接Dask时代:Python数据处理从此起飞!

    Dask 随着数据科学领域的迅速发展,处理大规模数据集已成为日常任务的一部分。传统的数据处理库,如NumPy和Pandas,在单机环境下表现出色,但当数据集超出内存容量时,它们就显得力不从心。...Dask的作用 Dask的主要作用是提供并行和分布式计算能力,以处理超出单个机器内存容量的大型数据集。...动态任务调度系统:负责将复杂的计算任务拆分成一系列小的、相互依赖的任务,并在可用的计算资源(如多核CPU、GPU或分布式集群上的节点)上高效地安排这些任务的执行顺序。...Dask数组:提供了一个类似NumPy的接口,用于处理分布式的大规模数组数据。 Dask数据框:提供了一个类似Pandas的接口,用于处理分布式的大规模表格数据,支持复杂的数据清洗、转换和统计运算。...参数与配置 在使用Dask时,可以通过配置参数来优化性能和资源使用。例如: scheduler和worker的内存限制:可以通过dask.config.set方法来设置。

    12810

    有比Pandas 更好的替代吗?对比Vaex, Dask, PySpark, Modin 和Julia

    为了验证这个问题,让我们在中等大小的数据集上探索一些替代方法,看看我们是否可以从中受益,或者咱们来确认只使用Pandas就可以了。...主要操作包括加载,合并,排序和聚合数据 Dask-并行化数据框架 Dask的主要目的是并行化任何类型的python计算-数据处理,并行消息处理或机器学习。扩展计算的方法是使用计算机集群的功能。...即使在单台PC上,也可以利用多个处理核心来加快计算速度。 Dask处理数据框的模块方式通常称为DataFrame。...但是dask基本上缺少排序选项。那是因为并行排序很特殊。Dask仅提供一种方法,即set_index。按定义索引排序。...(d2, on="col") re = re.groupby(cols).agg(params).compute() Dask性能 如何比较用于不同目的的两个平台的速度并非易事。

    4.8K10

    Python 中类似 tidyverse 的数据处理工具

    (类似 %>%):Python 通过 df.pipe 方法,或借助 pandas-扩展包(如 dfply 或 plydata)可以实现类似 R 的管道操作。...Pyjanitor对应 tidyverse 的功能:类似于 tidyr,用于数据整理。功能特点:基于 pandas,提供额外的清洗和操作方法,如列清理、拆分合并等。...Dask对应 tidyverse 的功能:用于处理超大规模数据,类似 dplyr 的分布式操作。功能特点:适合处理超过内存大小的数据,提供与 pandas 类似的 API。支持延迟计算和分布式计算。...对于大数据集,可以引入 dask 或 pyspark。使用 pyjanitor 做数据清洗。...:dask、pyspark.pandas管道操作:dfply如果你对特定的功能有需求,可以进一步选择和组合这些工具!

    17900
    领券