首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

cuDF,能取代 Pandas 吗?

Dask: Dask是一个灵活的Python并行计算库,使得在工作流程中平滑而简单地实现规模化。在CPU上,Dask使用Pandas来并行执行DataFrame分区上的操作。...在API和行为方面,cuDF和Pandas之间存在一些差异。...以下是cuDF和Pandas之间的相似之处和差异的对比: 支持的操作: cuDF支持许多与Pandas相同的数据结构和操作,包括Series、DataFrame、Index等,以及它们的一元和二元操作、...数据类型: cuDF支持Pandas中常用的数据类型,包括数值、日期时间、时间戳、字符串和分类数据类型。此外,cuDF还支持用于十进制、列表和“结构”值的特殊数据类型。...因为在GPU上迭代数据会导致极差的性能,GPU优化用于高度并行操作而不是顺序操作。 结果排序: 默认情况下,cuDF中的join(或merge)和groupby操作不保证输出排序。

45412

再见Pandas,又一数据处理神器!

Dask: Dask是一个灵活的Python并行计算库,使得在工作流程中平滑而简单地实现规模化。在CPU上,Dask使用Pandas来并行执行DataFrame分区上的操作。...在API和行为方面,cuDF和Pandas之间存在一些差异。...以下是cuDF和Pandas之间的相似之处和差异的对比: 支持的操作: cuDF支持许多与Pandas相同的数据结构和操作,包括Series、DataFrame、Index等,以及它们的一元和二元操作、...数据类型: cuDF支持Pandas中常用的数据类型,包括数值、日期时间、时间戳、字符串和分类数据类型。此外,cuDF还支持用于十进制、列表和“结构”值的特殊数据类型。...因为在GPU上迭代数据会导致极差的性能,GPU优化用于高度并行操作而不是顺序操作。 结果排序: 默认情况下,cuDF中的join(或merge)和groupby操作不保证输出排序。

28110
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    再见Pandas,又一数据处理神器!

    Dask: Dask是一个灵活的Python并行计算库,使得在工作流程中平滑而简单地实现规模化。在CPU上,Dask使用Pandas来并行执行DataFrame分区上的操作。...在API和行为方面,cuDF和Pandas之间存在一些差异。...以下是cuDF和Pandas之间的相似之处和差异的对比: 支持的操作: cuDF支持许多与Pandas相同的数据结构和操作,包括Series、DataFrame、Index等,以及它们的一元和二元操作、...数据类型: cuDF支持Pandas中常用的数据类型,包括数值、日期时间、时间戳、字符串和分类数据类型。此外,cuDF还支持用于十进制、列表和“结构”值的特殊数据类型。...因为在GPU上迭代数据会导致极差的性能,GPU优化用于高度并行操作而不是顺序操作。 结果排序: 默认情况下,cuDF中的join(或merge)和groupby操作不保证输出排序。

    32210

    使用Dask DataFrames 解决Pandas中并行计算的问题

    因此,我们将创建一个有6列的虚拟数据集。第一列是一个时间戳——以一秒的间隔采样的整个年份,其他5列是随机整数值。 为了让事情更复杂,我们将创建20个文件,从2000年到2020年,每年一个。...ls -lh data/ 以下是结果: 正如您所看到的,所有20个文件的大小都在1GB左右(更准确地说是1.09)。上面的代码片段需要一些时间来执行,但仍然比下载一个20GB文件要少得多。...(df[‘Date’].dt.month).sum() 这是总运行时间: 对于1GB的文件来说还不错,但是运行时取决于您的硬件。...你可以看到下面的总运行时间: 让我们来比较一下不同点: 这并不是一个显著的区别,但Dask总体上是一个更好的选择,即使是对于单个数据文件。...(df[‘Date’].dt.year).sum().compute() 下面是运行时的结果: 让我们来比较一下不同点: 正如您所看到的,当处理多个文件时,差异更显著——在Dask中大约快2.5倍。

    4.3K20

    并行计算框架Polars、Dask的数据处理性能对比

    对于大数据集,变量path1将是“yellow_tripdata/yellow_tripdata*.parquet”; 进行数据转换:a)连接两个DF,b)根据PULocationID计算行程距离的平均值...,c)只选择某些条件的行,d)将步骤b的值四舍五入为2位小数,e)将列“trip_distance”重命名为“mean_trip_distance”,f)对列“mean_trip_distance”进行排序...(df_dask): df_dask = df_dask.groupby("PULocationID").agg({"trip_distance": "mean"}) return...所以读取和转换非常快,执行它们的时间几乎不随数据集大小而变化; 可以看到这两个库都非常擅长处理中等规模的数据集。...但是,Dask在大型数据集上的平均时间性能为26秒。 这可能和Dask的并行计算优化有关,因为官方的文档说“Dask任务的运行速度比Spark ETL查询快三倍,并且使用更少的CPU资源”。

    50940

    搞定100万行数据:超强Python数据分析利器

    它可以在一个n维网格上每秒计算超过10亿(10^9)个对象的平均值、和、计数、标准差等统计信息。可视化使用直方图、使用直方图、密度图和3D立体渲染进行可视化。...正则表达式是CPU密集型的,这意味着大部分时间花在操作上,而不是花在它们周围的所有bookkeeping上。...dvv = dv[dv.col1 > 90] 6 高性能聚合数据 列如value_counts、groupby、unique和各种字符串操作都使用了快速高效的算法,这些算法都是在C++底层实现的。...我们已经定义了两个地理位置之间的弧距离,这个计算涉及到相当多的代数和三角学知识。平均值计算将强制执行这个计算消耗相当大的虚列。当使用Numpy执行时,只需要30秒(11亿行)。...当我们对numba预编译表达式执行同样的操作时,我们的执行时间大约快了2.5倍,至少在我们的测试电脑上是这样。如果有一个英伟达显卡,可以尝试一下!

    2.2K1817

    多快好省地使用pandas分析大型数据集

    下面我们将循序渐进地探索在内存开销和计算时间成本之间寻求平衡,首先我们不做任何优化,直接使用pandas的read_csv()来读取train.csv文件: import pandas as pd raw...= pd.read_csv('train.csv') # 查看数据框内存使用情况 raw.memory_usage(deep=True) 图2 可以看到首先我们读入整个数据集所花费的时间达到了将近三分钟...」 因为pandas默认情况下读取数据集时各个字段确定数据类型时不会替你优化内存开销,比如我们下面利用参数nrows先读入数据集的前1000行试探着看看每个字段都是什么类型: raw = pd.read_csv...'is_attributed': 'int8' }) raw.info() 图4 可以看到,在修改数据精度之后,前1000行数据集的内存大小被压缩了将近....groupby(['app', 'os']) .agg({'ip': 'count'}) .compute() # 激活计算图 ) 并且dask会非常智能地调度系统资源,使得我们可以轻松跑满所有

    1.4K40

    有比Pandas 更好的替代吗?对比Vaex, Dask, PySpark, Modin 和Julia

    (d2, on="col") re = re.groupby(cols).agg(params).compute() Dask性能 如何比较用于不同目的的两个平台的速度并非易事。...但在相对较小的数据上使用Spark不会产生理想的速度提高。 Vaex 到目前为止,我们已经看到了将工作分散在更多计算机核心之间以及群集中通常有许多计算机之间的平台。...首次运行任何Julia代码时,即时编译器都需要将其翻译为计算机语言,这需要一些时间。这就是为什么任何代码的第一次运行都比后续运行花费更长的时间的原因。...在下面的图表中,您可以看到第一次运行的时间明显长于其余六次测量的平均值。我还尝试过在单个内核(julia)和4个处理器内核(julia-4)上运行Julia。 ?...它的作者声称,modin利用并行性来加快80%的Pandas功能。不幸的是,目前没发现作者声称的速度提升。并且有时在初始化Modin库导入命令期间会中断。

    4.8K10

    【Python篇】深入挖掘 Pandas:机器学习数据处理的高级技巧

    删除包含缺失值的行 df_cleaned = df.dropna() # 2....中位数填充:适合存在极端值的数值特征。 众数填充:常用于分类特征。 1.2 数据标准化与归一化 在某些机器学习算法(如线性回归、KNN 等)中,数据的尺度差异会对模型表现产生影响。...2.1 时间索引与重采样 Pandas 提供了非常灵活的时间索引,支持将字符串转换为日期格式,并使用 resample() 函数进行时间重采样。...# 创建时间索引 df['Date'] = pd.to_datetime(df['Date']) df.set_index('Date', inplace=True) # 按月份重采样并计算平均值 df_monthly...一样进行处理 df_dask_grouped = df_dask.groupby('Category').sum() # 执行计算并返回 Pandas 数据结构 df_result = df_dask_grouped.compute

    23910

    pandas多表操作,groupby,时间操作

    计算分组摘要统计,如计数、平均值、标准差,或用户自定义函数。对DataFrame的列应用各种各样的函数。应用组内转换或其他运算,如规格化、线性回归、排名或选取子集等。计算透视表或交叉表。...:表示时间间隔,即两个时间点之间的长度 tzinfo: 与时区有关的相关信息。...Series 和 DataFrame 都有一个 .shift() 方法用于执行单纯的移动操作,index 维持不变: pandas的时期(period) pd.Period 类的构造函数仍需要一个时间戳...freq 用于指明该 period 的长度,时间戳则说明该 period 在公元时间轴上的位置。...: PeriodIndex(['2010-01', '2010-02', '2010-03', '2010-04', '2010-05'], dtype='period[M]', freq='M') 时间戳与时期间相互转换

    3.8K10

    Python 数据分析(PYDA)第三版(五)

    时间序列也可以是不规则的,没有固定的时间单位或单位之间的偏移。如何标记和引用时间序列数据取决于应用程序,您可能有以下之一: 时间戳 特定的时间点。...两个datetime值之间的差异(以天,秒和微秒计) tzinfo 存储时区信息的基本类型 在字符串和日期时间之间转换 您可以使用str或strftime方法对datetime对象和 pandas 的...: Period('2009', 'A-DEC') 如果两个周期具有相同的频率,则它们之间的差异是单位之间的数量作为日期偏移量: In [152]: pd.Period("2014", freq="A-DEC...,因此给定频率的时间戳只能属于一个期间。...kind 聚合到期间("period")或时间戳("timestamp");默认为时间序列具有的索引类型 convention 在重新采样周期时,用于将低频周期转换为高频的约定("start"或"end

    17900

    一行代码将Pandas加速4倍

    这对于较小的数据集工作得很好,因为你可能不会注意到速度上的差异。但是,随着数据集越来越大,计算量越来越大,如果只使用单个 cpu 核,速度会受到很大的影响。...它在数据集上同一时间只能计算一次,但该数据集可以有数百万甚至数十亿行。 然而,大多数用于数据科学的现代机器都有至少 2 个 CPU 核。...可以用*.mean()取每一列的平均值,用groupby对数据进行分组,用drop_duplicates()*删除所有重复项,或者使用其他任何内置的 pandas 函数。...这正是 Modin 所做的。它将 DataFrame 分割成不同的部分,这样每个部分都可以发送到不同的 CPU 核。Modin 在行和列之间划分 DataFrame。...在有些情况下,panda 实际上比 Modin 更快,即使在这个有 5,992,097(近 600 万)行的大数据集上也是如此。下表显示了我进行的一些实验中 panda 与 Modin 的运行时间。

    2.9K10

    一行代码将Pandas加速4倍

    这对于较小的数据集工作得很好,因为你可能不会注意到速度上的差异。但是,随着数据集越来越大,计算量越来越大,如果只使用单个 cpu 核,速度会受到很大的影响。...它在数据集上同一时间只能计算一次,但该数据集可以有数百万甚至数十亿行。 然而,大多数用于数据科学的现代机器都有至少 2 个 CPU 核。...可以用*.mean()取每一列的平均值,用groupby对数据进行分组,用drop_duplicates()*删除所有重复项,或者使用其他任何内置的 pandas 函数。...这正是 Modin 所做的。它将 DataFrame 分割成不同的部分,这样每个部分都可以发送到不同的 CPU 核。Modin 在行和列之间划分 DataFrame。...在有些情况下,panda 实际上比 Modin 更快,即使在这个有 5,992,097(近 600 万)行的大数据集上也是如此。下表显示了我进行的一些实验中 panda 与 Modin 的运行时间。

    2.6K10

    如果要快速的读写表格,Pandas 并不是最好的选择

    Pandas 有两个竞争对手,一个是 Dask[1] 另一个是 DataTable[2],不过 Pandas 太牛逼了,其他两个库都提供了与 Pandas 的 DataFrame 相互转换的方法。...它们都可以用来读写 Excel 有网友对此做了读写性能测试[3],先生成随机数据集,其中包含可变行和三十列——包括字符串、浮点数和整数数据类型。每个测试重复了五次,取其平均值。...下面是测试结果: 读取 csv 当行数少于一百万时,Dask 和 Pandas 从 CSV 生成 Pandas DataFrame 的时间大致相同。...但是,当我们超过一百万行时,Dask 的性能会变差,生成 Pandas DataFrame 所花费的时间要比 Pandas 本身多得多。...在这两种情况下,Datatable 在 Pandas 中生成 DataFrame 所需的时间最少,提供高达 4 到 5 倍的加速。

    66610

    Pandas高级数据处理:数据报告生成

    # 查找缺失值df.isnull().sum()# 删除含有缺失值的行df_cleaned = df.dropna()# 使用均值填充缺失值df_filled = df.fillna(df.mean()...时间格式解析错误时间数据的解析错误也是一个常见的问题。如果时间格式不符合预期,可能会导致解析失败或结果不准确。解决方案:使用 pd.to_datetime() 函数指定时间格式。...这通常是由于处理过大的数据集引起的。避免方法:优化数据处理逻辑,减少不必要的中间变量,或者使用分布式计算框架如 Dask。...# 使用 Dask 处理大规模数据import dask.dataframe as ddddf = dd.read_csv('large_data.csv')result = ddf.groupby('...数据汇总与统计生成数据报告的第一步是对数据进行汇总和统计。Pandas 提供了丰富的聚合函数,如 groupby()、agg() 等。

    8710

    数据处理 | xarray的计算距平、重采样、时间窗

    在同一时间范围内在一个更小的尺度下(即格点分辨率)考虑变量变化的基准参考值,然后基于这个基准参考值(多年平均值)计算相对于这个基准参考值的异常变化(距平)。...xarray 通过使用Groupby 算法使这些类型的转换变得容易。下面给出了计算去除月份温度差异的海温月数据。...北大西洋单点的时间序列 2018 年 1 月 1 日与 1960 年 1 月 1 日之间 SST 之间的差异 (ds_anom.sel(time="2018-01-01") - ds_anom.sel(...2018年1月1日与1960年1月1日之间SST之间的差异 Resample(重采样) xarray 中的Resample(重采样)的处理方法与 Pandas 包几乎相同。...(50°N, 60°E) 的海温变化 第一行代码将原始海温变化的时间序列画了出来,第二行画了经逐 5 年平均后的海温变化的时间序列。

    11.5K74
    领券