首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

cifar10数据集的读取PythonTensorflow

我们定义一些变量,因为针对的是cifar10数据集,所以变量的值都是固定的,为什么定义这些变量呢,因为变量的名字可以很直观的告诉我们这个数字的代表什么,试想如果代码里面全是些数字...数据集类 class Cifar10DataSet(object): “””docstring for Cifar10DataSet””” def... def dense_to_one_hot(labels_dense, num_classes): #数据数量,np.shape[0]返回行数,对于一维数据返回的是元素个数...数据集类 class Cifar10DataSet(object): """docstring for Cifar10DataSet""" def __init_...数据集读取的理解,cifar10数据集的介绍参考 http://blog.csdn.net/garfielder007/article/details/51480844 发布者:全栈程序员栈长,转载请注明出处

60030

matlab读取mnist数据集(c语言从文件中读取数据)

准备数据 MNIST是在机器学习领域中的一个经典问题。该问题解决的是把28×28像素的灰度手写数字图片识别为相应的数字,其中数字的范围从0到9....共有四个文件需要下载: train-images-idx3-ubyte.gz,训练集,共 60,000 幅(28*28)的图像数据; train-labels-idx1-ubyte.gz,训练集的标签信息...(取值为 0-9),60,000*1 t10k-images-idx3-ubyte.gz,测试集(t: test, 10k: 10,000),共 10,000 副(28*28)的图像数据 t10k-labels-idx1...文件名中的 ubyte 表示数据类型,无符号的单字节类型,对应于 matlab 中的 uchar 数据类型。...,以指向正确的位置 由于matlab中fread函数默认读取8位二进制数,而原数据为32bit整型且数据为16进制或10进制,因此直接使用fread(f,4)或者fread(f,’uint32′)读出数据均是错误数据

4.9K20
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    PyTorch 中自定义数据集的读取方法

    显然我们在学习深度学习时,不能只局限于通过使用官方提供的MNSIT、CIFAR-10、CIFAR-100这样的数据集,很多时候我们还是需要根据自己遇到的实际问题自己去搜集数据,然后制作数据集(收集数据集的方法有很多...这里只介绍数据集的读取。 1....自定义数据集的方法: 首先创建一个Dataset类 [在这里插入图片描述] 在代码中: def init() 一些初始化的过程写在这个函数下 def...len() 返回所有数据的数量,比如我们这里将数据划分好之后,这里仅仅返回的是被处理后的关系 def getitem() 回数据和标签补充代码 上述已经将框架打出来了,接下来就是将框架填充完整就行了...assert len(images)==len(labels) return images,labels # 返回数据的数量 def __len__

    93330

    从图像中检测和识别表格,北航&微软提出新型数据集TableBank

    选自 arxiv 作者:Minghao Li 等 机器之心编译 机器之心编辑部 该研究中,来自北航和微软亚研的研究者联合创建了一个基于图像的表格检测和识别新型数据集 TableBank,该数据集是通过对网上的...众所周知,ImageNet 和 COCO 是两个流行的图像分类和目标检测数据集,两者均以众包的方式构建,但花费高昂且耗日持久,需要数月甚至数年时间来构建大型基准数据集。...这部分分三步详细介绍了数据收集过程:文档获取、创建表格检测数据集、创建表结构识别数据集。 文档获取 研究者从网上抓取 Word 文档。...通过这种方式,研究者可以从 Word 和 Latex 文档的源代码中自动构建表表结构识别数据集。就 Word 文档而言,研究者只需将原始 XML 信息从文档格式转换成 HTML 标签序列即可。...表 3:图像-文本模型在 Word 和 Latex 数据集上的评估结果(BLEU)。 ? 表 4:生成 HTML 标注序列和真值序列之间的精确匹配(exact match)数量。 ?

    2.7K20

    遥感图像中的小物体检测(内有新数据集)

    最后,使用了不同的检测器从SR图像中检测出小的物体。当将检测损失反向传播到SR网络中时,检测器的作用就像鉴别器,因此提高了SR图像的质量。...数据集:研究人员根据卫星图像(Bing地图)创建了OGST(油气储罐)数据集,该数据集的GSD为30 cm和1.2 m。...除了OGST数据集外,研究人员还将方法应用于COWC数据集(Cars Overhead with Context),以比较不同用例的检测性能。对于两个数据集,该方法均优于独立的最新研究结果。...DRa的倒置梯度反向传播到生成器中,以创建SR图像,从而实现精确的对象检测。边缘信息是从ISR中提取的,而EEN网络会增强这些边缘。...然后,将增强的边缘再次添加到ISR减去拉普拉斯算子提取的原始边缘,将得到具有增强边缘的输出SR图像。最后,研究人员使用探测器网络从SR图像中探测物体。

    1.5K20

    【数据】深度学习从“数据集”开始

    cifar10被适时地整理出来,这也是一个只用于分类的数据集,是tiny数据集的子集。后者是通过选取wordnet中的关键词,从google,flick等搜索引擎中爬取,去重得来。...可以看出,cifar10有点类似于类别多样性得到了扩充的mnist的彩色增强版,图像大小差不多,数据集大小也一样,类别也相等。 ?...cifar100数据集则包含100小类,每小类包含600个图像,其中有500个训练图像和100个测试图像。...下面展示了从哺乳动物到有胎盘哺乳动物到肉食动物到犬科的到狗到工作中的狗到哈士奇的这样的不断精细分的类。 ?...COCO数据集有91类,以人类4岁小孩能够辨识为基准。其中82个有超过5000个instance(instance即同一个类不同的个体,比如图像中不同的人)。

    1.5K20

    我用 PyTorch 复现了 LeNet-5 神经网络(CIFAR10 数据集篇)!

    今天我们将使用 Pytorch 来继续实现 LeNet-5 模型,并用它来解决 CIFAR10 数据集的识别。 正文开始!...二、使用LeNet-5网络结构创建CIFAR-10识别分类器 LeNet-5 网络本是用来识别 MNIST 数据集的,下面我们来将 LeNet-5 应用到一个比较复杂的例子,识别 CIFAR-10 数据集...LeNet-5 网络上文已经搭建过了,由于 CIFAR10 数据集图像是 RGB 三通道的,因此 LeNet-5 网络 C1 层卷积选择的滤波器需要 3 通道,网络其它结构跟上文都是一样的。...以上就是 PyTorch 构建 LeNet-5 卷积神经网络并用它来识别 CIFAR10 数据集的例子。全文的代码都是可以顺利运行的,建议大家自己跑一边。...值得一提的是,针对 MNIST 数据集和 CIFAR10 数据集,最大的不同就是 MNIST 是单通道的,CIFAR10 是三通道的,因此在构建 LeNet-5 网络的时候,C1层需要做不同的设置。

    1.3K20

    『 论文阅读』Understanding deep learning requires rethinking generalization

    我们用理论结构证实了这些实验结果,表明简单的深度两个神经网络一旦参数数量超过了实际数据点的数量,就已经具有完美的有限样本表达能力。 论文通过与传统模型的比较来解释我们的实验结果。...图像分类数据集:CIFAR10数据集(Krizhevsky&Hinton,2009)和ImageNet(Russakovsky等,2015)ILSVRC 2012数据集。...部分损坏的标签:独立的概率p,每个图像的标签被破坏为一个统一的随机类。 随机标签:所有标签都被替换为随机标签。 混洗像素:选择像素的随机排列,然后将相同的排列应用于训练和测试集中的所有图像。...随机像素:独立地对每个图像应用不同的随机排列。 高斯:高斯分布(与原始图像数据集具有匹配均值和方差)用于为每个图像生成随机像素。 在CIFAR10上安装随机标签和随机像素。...(b)早期停止对CIFAR10不一定有帮助,但是批处理正则化稳定了训练过程并改进了泛化。

    1.1K30

    12 | PyTorch全连接网络:建立区分鸟和飞机的模型

    小图像数据集 今天要用的数据集称为CIFAR-10,关于这个数据集我前几天还看到一个跟它相关的趣闻,谷歌一个大牛发布了一篇论文,用数万美元 TPU 算力,实现在 CIFAR-10 上 0.03% 的改进...True) Dataset类 下载完数据集之后,这里需要介绍一个数据集的类Dataset,我们也可以自己构建数据集并使它符合Dataset的规范,这样我们可以使用一些Dataset的方法。...数据集我们现在已经有了,接下来我们要回忆一下,在最开头的给图片分类的试验中,我们还需要一个预处理的环节,在里面对图像做了各种变换,然后才能够输入到模型中,如果你已经忘了可以翻一下这个系列的第0节课看一下...2分类:鸟还是飞机 我们的数据集有10个类别,这里我们先不做那么多的分类,我们先处理一个二分类问题,把鸟和飞机的图像拿出来,做一个全连接的网络来学习,看看能不能用神经网络模型来区分这两个类别。...同时,输出的结果中,对于较大的结果有了一定的放大作用,而对于较小的数值有了一定的缩小的作用。 这么好用的功能,自然是已经躺在nn模块里面,我们调用nn.Softmax()方法就可以了。

    42510

    MNIST数据集 & CIFAR10数据集

    大家好,又见面了,我是你们的朋友全栈君。 MNIST数据集 MNIST数据集是分类任务中最简单、最常用的数据集。...人为的手写了0-9数字的图片 MNIST大概有7w张 MNIST数据值都是灰度图,所以图像的通道数只有一个 因为MNIST数据集是专门为深度学习来的,所以其数据集格式和我们常见的很不一样...,但是在Pytorch/Tensorflow中有函数可以很容易的读取,如果用普通Python来读取则不是那么容易 CIFAR10数据集 http://www.cs.toronto.edu/~...kriz/cifar.html CIFAR10数据集比MNIST要复杂一些....CIFAR10是真实数据集,MNIST是人为构建的 CIFAR10是32*32的 有CIFAR-10和CIFAR-100 CIFAR-10图片的10种类别,每一类大概有6000张 一共6w

    66910

    针对深度学习的“失忆症”,科学家提出基于相似性加权交错学习

    对于SWIL,相似度计算用于确定要交错的现有旧类别图像的比例。在此基础上,作者团队从每个旧类别中随机抽取具有加权概率的输入图像。...作者团队使用以下两种方法比较SWIL和FIL: 内存比,即FIL和SWIL中存储的图像数量之比,表示存储的数据量减少; 加速比,即在FIL和SWIL中呈现的内容总数的比率,以达到新类别回忆的饱和精度,表明学习新类别所需的时间减少...他们在之前未见过的总共9000张图像(1000张图像/类,不包括“car”(“轿车”)类)上对该模型进行了测试。图4B是作者团队基于CIFAR10数据集计算的相似性矩阵。...为此他们采用了图4中经过训练的CNN模型,在FIL和SWIL条件下学习CIFAR10数据集中的“cat”类(任务1),只在CIFAR10的剩余9个类别上训练,然后在每个条件下训练模型学习新的“car”类...他们在CIFAR100数据集(训练集500张图像/类,测试集100张图像/类)上训练了一个复杂的CNN模型-VGG19(共有19层),学习了其中的90个类别。然后对网络进行再训练,学习新类别。

    28620

    TensorFlow学习笔记--CIFAR-10 图像识别

    在测试集上测试模型的性能 二、下载CIFAR-10数据 在工程根目录创建 cifar10_download.py ,输入如下代码创建下载数据的程序: # 引入当前目录中已经编写好的cifar10模块...readme.html 数据集介绍文件 三、TensorFlow 读取数据的机制 普通方式 将硬盘上的数据读入内存中,然后提供给CPU或者GPU处理 内存队列方式 普通方式读取数据会出现GPU或...利用内存队列,将数据读取和计算放在两个线程中,读取线程只需向内存队列中读入文件,而计算线程只用从内存队列中读取计算需要的数据,这样就解决了GPU或者CPU的空闲问题。...创建内存队列 在tensorflow中不手动创建内存队列,只需使用 reader对象从文件名队列中读取数据就可以了。...常用的图像数据增强方法如下表 方法 说明 平移 将图像在一定尺度范围内平移 旋转 将图像在一定角度范围内旋转 翻转 水平翻转或者上下翻转图片 裁剪 在原图上裁剪出一块 缩放 将图像在一定尺度内放大或缩小

    99620

    针对深度学习的“失忆症”,科学家提出基于相似性加权交错学习,登上PNAS

    对于SWIL,相似度计算用于确定要交错的现有旧类别图像的比例。在此基础上,作者团队从每个旧类别中随机抽取具有加权概率的输入图像。...作者团队使用以下两种方法比较SWIL和FIL: 1) 内存比,即FIL和SWIL中存储的图像数量之比,表示存储的数据量减少; 2) 加速比,即在FIL和SWIL中呈现的内容总数的比率,以达到新类别回忆的饱和精度...他们在之前未见过的总共9000张图像(1000张图像/类,不包括“car”(“轿车”)类)上对该模型进行了测试。图4B是作者团队基于CIFAR10数据集计算的相似性矩阵。...为此他们采用了图4中经过训练的CNN模型,在FIL和SWIL条件下学习CIFAR10数据集中的“cat”类(任务1),只在CIFAR10的剩余9个类别上训练,然后在每个条件下训练模型学习新的“car”类...他们在CIFAR100数据集(训练集500张图像/类,测试集100张图像/类)上训练了一个复杂的CNN模型-VGG19(共有19层),学习了其中的90个类别。然后对网络进行再训练,学习新类别。

    33410

    转载|使用PaddleFluid和TensorFlow实现图像分类网络SE_ResNeXt

    这一篇我们使用 cifar10 数据集 [5][6] 作为实验数据。...cifar-10 数据集包含 60000 个 32*32 的彩色图像,共有 10 类,图 4 是 cifar10 数据集的 10 个类别。图 4 是 cifar-10 数据集的 10 个类别示意图。...▲ 图 4. cifar10数据集 cifar10 数据集有 50000 个训练图像和 10000 个测试图像,被划分为 5 个训练块和 1 个测试块,每个块有 10000 个图像。...TensorFlow 的数据读取模块会调用 data_utils [7] 中的 download_data 方法自动 从网站上下载 cifar-10 数据集,无需手动下载。...实现这个 data reader 接口时只需要考虑:如何从原始数据文件中读取数据,返回一条以 numpy ndarrary 格式的训练数据。 3.

    59730

    针对深度学习的“失忆症”,科学家提出基于相似性加权交错学习,登上PNAS

    对于SWIL,相似度计算用于确定要交错的现有旧类别图像的比例。在此基础上,作者团队从每个旧类别中随机抽取具有加权概率的输入图像。...作者团队使用以下两种方法比较SWIL和FIL: 1) 内存比,即FIL和SWIL中存储的图像数量之比,表示存储的数据量减少; 2) 加速比,即在FIL和SWIL中呈现的内容总数的比率,以达到新类别回忆的饱和精度...他们在之前未见过的总共9000张图像(1000张图像/类,不包括“car”(“轿车”)类)上对该模型进行了测试。图4B是作者团队基于CIFAR10数据集计算的相似性矩阵。...为此他们采用了图4中经过训练的CNN模型,在FIL和SWIL条件下学习CIFAR10数据集中的“cat”类(任务1),只在CIFAR10的剩余9个类别上训练,然后在每个条件下训练模型学习新的“car”类...他们在CIFAR100数据集(训练集500张图像/类,测试集100张图像/类)上训练了一个复杂的CNN模型-VGG19(共有19层),学习了其中的90个类别。然后对网络进行再训练,学习新类别。

    29920

    不再使用人眼评估,你训练的GAN还OK吗?

    上述评估指标表明,数据集复杂程度(从 CIFAR10 到 CIFAR100 再到 ImageNet)与 GAN 质量呈负相关关系。...用 MNIST[30]、CIFAR10、CIFAR100[28] 和 ImageNet[14] 数据集评估了图像分类表现。实验结果表明,随着数据集复杂度的增加,GAN 图像的质量显著降低。...此外,我们的评估指标清楚地表明,数据集复杂程度(从 CIFAR10 到 CIFAR100 再到 ImageNet),与 GAN 质量呈负相关关系。 3....正如我们在 5.3 节中所说的那样,多样性会随着生成图像数量的变化而变化。我们将在本节末尾的评价讨论中对其进行分析。...如果所有的生成图像都是完美的,GAN-train 的 S_g(其中 GAN-train 等于小尺寸训练集的验证精度)的大小将会是 S_g 中不同图像数量的良好估计。

    89520

    针对深度学习的“失忆症”,科学家提出基于相似性加权交错学习

    对于SWIL,相似度计算用于确定要交错的现有旧类别图像的比例。在此基础上,作者团队从每个旧类别中随机抽取具有加权概率的输入图像。...作者团队使用以下两种方法比较SWIL和FIL: 1) 内存比,即FIL和SWIL中存储的图像数量之比,表示存储的数据量减少; 2) 加速比,即在FIL和SWIL中呈现的内容总数的比率,以达到新类别回忆的饱和精度...他们在之前未见过的总共9000张图像(1000张图像/类,不包括“car”(“轿车”)类)上对该模型进行了测试。图4B是作者团队基于CIFAR10数据集计算的相似性矩阵。...为此他们采用了图4中经过训练的CNN模型,在FIL和SWIL条件下学习CIFAR10数据集中的“cat”类(任务1),只在CIFAR10的剩余9个类别上训练,然后在每个条件下训练模型学习新的“car”类...他们在CIFAR100数据集(训练集500张图像/类,测试集100张图像/类)上训练了一个复杂的CNN模型-VGG19(共有19层),学习了其中的90个类别。然后对网络进行再训练,学习新类别。

    39310
    领券